test_image_processing_mobilevit.py 8.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
20
from datasets import load_dataset

21
from transformers.testing_utils import require_torch, require_vision
22
from transformers.utils import is_torch_available, is_vision_available
23

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
25
26


27
28
29
if is_torch_available():
    import torch

30
if is_vision_available():
31
32
    from PIL import Image

33
    from transformers import MobileViTImageProcessor
34
35


36
class MobileViTImageProcessingTester(unittest.TestCase):
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
47
        do_center_crop=True,
amyeroberts's avatar
amyeroberts committed
48
        crop_size=None,
49
50
        do_flip_channel_order=True,
    ):
amyeroberts's avatar
amyeroberts committed
51
52
        size = size if size is not None else {"shortest_edge": 20}
        crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
53
54
55
56
57
58
59
60
61
62
63
64
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_flip_channel_order = do_flip_channel_order

65
    def prepare_image_processor_dict(self):
66
67
68
69
70
71
72
73
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "do_flip_channel_order": self.do_flip_channel_order,
        }

74
75
76
77
78
79
80
81
82
83
84
85
86
87
    def expected_output_image_shape(self, images):
        return self.num_channels, self.crop_size["height"], self.crop_size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def prepare_semantic_single_inputs():
    dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image = Image.open(dataset[0]["file"])
    map = Image.open(dataset[1]["file"])

    return image, map


def prepare_semantic_batch_inputs():
    dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")

    image1 = Image.open(dataset[0]["file"])
    map1 = Image.open(dataset[1]["file"])
    image2 = Image.open(dataset[2]["file"])
    map2 = Image.open(dataset[3]["file"])

    return [image1, image2], [map1, map2]


109
110
@require_torch
@require_vision
111
class MobileViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
112
    image_processing_class = MobileViTImageProcessor if is_vision_available() else None
113
114

    def setUp(self):
115
        self.image_processor_tester = MobileViTImageProcessingTester(self)
116
117

    @property
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_center_crop"))
        self.assertTrue(hasattr(image_processing, "center_crop"))
        self.assertTrue(hasattr(image_processing, "do_flip_channel_order"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 20})
        self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
        self.assertEqual(image_processor.size, {"shortest_edge": 42})
        self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    def test_call_segmentation_maps(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
        maps = []
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)
            maps.append(torch.zeros(image.shape[-2:]).long())

        # Test not batched input
        encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched
        encoding = image_processing(image_inputs, maps, return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                self.image_processor_tester.batch_size,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test not batched input (PIL images)
        image, segmentation_map = prepare_semantic_single_inputs()

        encoding = image_processing(image, segmentation_map, return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                1,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                1,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)

        # Test batched input (PIL images)
        images, segmentation_maps = prepare_semantic_batch_inputs()

        encoding = image_processing(images, segmentation_maps, return_tensors="pt")
        self.assertEqual(
            encoding["pixel_values"].shape,
            (
                2,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(
            encoding["labels"].shape,
            (
                2,
                self.image_processor_tester.crop_size["height"],
                self.image_processor_tester.crop_size["width"],
            ),
        )
        self.assertEqual(encoding["labels"].dtype, torch.long)
        self.assertTrue(encoding["labels"].min().item() >= 0)
        self.assertTrue(encoding["labels"].max().item() <= 255)