"docs/vscode:/vscode.git/clone" did not exist on "322037e842e5e89080918c824998c17722df6f19"
run_text_classification.py 23.7 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for sequence classification."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.

Matt's avatar
Matt committed
19
import json
Matt's avatar
Matt committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import logging
import os
import sys
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional

import numpy as np
from datasets import load_dataset

from transformers import (
    AutoConfig,
    AutoTokenizer,
    HfArgumentParser,
    PretrainedConfig,
Matt's avatar
Matt committed
35
    PushToHubCallback,
Matt's avatar
Matt committed
36
    TFAutoModelForSequenceClassification,
37
    TFTrainingArguments,
Matt's avatar
Matt committed
38
    create_optimizer,
Matt's avatar
Matt committed
39
40
    set_seed,
)
41
from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, send_example_telemetry
Matt's avatar
Matt committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"  # Reduce the amount of console output from TF
import tensorflow as tf  # noqa: E402


logger = logging.getLogger(__name__)


# region Helper classes
class SavePretrainedCallback(tf.keras.callbacks.Callback):
    # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary
    # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback
    # that saves the model with this method after each epoch.
    def __init__(self, output_dir, **kwargs):
        super().__init__()
        self.output_dir = output_dir

    def on_epoch_end(self, epoch, logs=None):
        self.model.save_pretrained(self.output_dir)


# endregion

66

Matt's avatar
Matt committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# region Command-line arguments
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})

    max_seq_length: int = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
89
90
91
92
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Matt's avatar
Matt committed
93
94
95
96
97
98
99
100
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
103
104
105
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
                "Data will always be padded when using TPUs."
            )
Matt's avatar
Matt committed
106
107
108
109
110
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
114
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
115
116
        },
    )
117
    max_val_samples: Optional[int] = field(
Matt's avatar
Matt committed
118
119
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
120
121
122
123
            "help": (
                "For debugging purposes or quicker training, truncate the number of validation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
124
125
        },
    )
126
    max_test_samples: Optional[int] = field(
Matt's avatar
Matt committed
127
128
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
129
130
131
132
            "help": (
                "For debugging purposes or quicker training, truncate the number of test examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        },
    )

    def __post_init__(self):
        train_extension = self.train_file.split(".")[-1].lower() if self.train_file is not None else None
        validation_extension = (
            self.validation_file.split(".")[-1].lower() if self.validation_file is not None else None
        )
        test_extension = self.test_file.split(".")[-1].lower() if self.test_file is not None else None
        extensions = {train_extension, validation_extension, test_extension}
        extensions.discard(None)
        assert len(extensions) != 0, "Need to supply at least one of --train_file, --validation_file or --test_file!"
        assert len(extensions) == 1, "All input files should have the same file extension, either csv or json!"
        assert "csv" in extensions or "json" in extensions, "Input files should have either .csv or .json extensions!"
        self.input_file_extension = extensions.pop()


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
176
            "help": (
177
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
                "with private models)."
            )
Matt's avatar
Matt committed
180
181
182
183
184
185
186
187
188
189
190
191
192
        },
    )


# endregion


def main():
    # region Argument parsing
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

193
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
Matt's avatar
Matt committed
194
195
196
197
198
199
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
200
201
202
203
204

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_text_classification", model_args, data_args, framework="tensorflow")

Matt's avatar
Matt committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    output_dir = Path(training_args.output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)
    # endregion

    # region Checkpoints
    # Detecting last checkpoint.
    checkpoint = None
    if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
        if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file():
            checkpoint = output_dir
            logger.info(
                f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
                " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
        else:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to continue regardless."
            )

    # endregion

    # region Logging
    logging.basicConfig(
229
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Matt's avatar
Matt committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO)

    logger.info(f"Training/evaluation parameters {training_args}")
    # endregion

    # region Loading data
    # For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally
    # 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two
    # columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than
    # a single grammatical sentence, when the task requires it.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file}
    data_files = {key: file for key, file in data_files.items() if file is not None}

    for key in data_files.keys():
        logger.info(f"Loading a local file for {key}: {data_files[key]}")

    if data_args.input_file_extension == "csv":
        # Loading a dataset from local csv files
257
258
259
260
261
262
        datasets = load_dataset(
            "csv",
            data_files=data_files,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
Matt's avatar
Matt committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    else:
        # Loading a dataset from local json files
        datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Label preprocessing
    # If you've passed us a training set, we try to infer your labels from it
    if "train" in datasets:
        # By default we assume that if your label column looks like a float then you're doing regression,
        # and if not then you're doing classification. This is something you may want to change!
        is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
    # If you haven't passed a training set, we read label info from the saved model (this happens later)
    else:
        num_labels = None
        label_list = None
        is_regression = None
    # endregion

291
    # region Load model config and tokenizer
Matt's avatar
Matt committed
292
293
294
295
296
297
298
299
300
301
302
303
    if checkpoint is not None:
        config_path = training_args.output_dir
    elif model_args.config_name:
        config_path = model_args.config_name
    else:
        config_path = model_args.model_name_or_path
    if num_labels is not None:
        config = AutoConfig.from_pretrained(
            config_path,
            num_labels=num_labels,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
304
            token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
305
306
307
308
309
310
        )
    else:
        config = AutoConfig.from_pretrained(
            config_path,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
311
            token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
312
313
314
315
316
        )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
317
        token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    )
    # endregion

    # region Dataset preprocessing
    # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
    column_names = {col for cols in datasets.column_names.values() for col in cols}
    non_label_column_names = [name for name in column_names if name != "label"]
    if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", "sentence2"
    elif "sentence1" in non_label_column_names:
        sentence1_key, sentence2_key = "sentence1", None
    else:
        if len(non_label_column_names) >= 2:
            sentence1_key, sentence2_key = non_label_column_names[:2]
        else:
            sentence1_key, sentence2_key = non_label_column_names[0], None

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    # Ensure that our labels match the model's, if it has some pre-specified
    if "train" in datasets:
344
345
        if not is_regression and config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
            label_name_to_id = config.label2id
346
            if sorted(label_name_to_id.keys()) == sorted(label_list):
Matt's avatar
Matt committed
347
348
349
350
                label_to_id = label_name_to_id  # Use the model's labels
            else:
                logger.warning(
                    "Your model seems to have been trained with labels, but they don't match the dataset: ",
351
352
                    f"model labels: {sorted(label_name_to_id.keys())}, dataset labels:"
                    f" {sorted(label_list)}.\nIgnoring the model labels as a result.",
Matt's avatar
Matt committed
353
354
355
356
357
358
359
                )
                label_to_id = {v: i for i, v in enumerate(label_list)}
        elif not is_regression:
            label_to_id = {v: i for i, v in enumerate(label_list)}
        else:
            label_to_id = None
        # Now we've established our label2id, let's overwrite the model config with it.
360
361
362
        config.label2id = label_to_id
        if config.label2id is not None:
            config.id2label = {id: label for label, id in label_to_id.items()}
Matt's avatar
Matt committed
363
        else:
364
            config.id2label = None
Matt's avatar
Matt committed
365
    else:
366
        label_to_id = config.label2id  # Just load the data from the model
Matt's avatar
Matt committed
367

368
    if "validation" in datasets and config.label2id is not None:
Matt's avatar
Matt committed
369
370
371
372
373
374
375
376
377
        validation_label_list = datasets["validation"].unique("label")
        for val_label in validation_label_list:
            assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!"

    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
378
        result = tokenizer(*args, max_length=max_seq_length, truncation=True)
Matt's avatar
Matt committed
379
380

        # Map labels to IDs
381
382
        if config.label2id is not None and "label" in examples:
            result["label"] = [(config.label2id[l] if l != -1 else -1) for l in examples["label"]]
Matt's avatar
Matt committed
383
384
385
        return result

    datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache)
386

Matt's avatar
Matt committed
387
388
    # endregion

389
390
391
392
393
394
395
396
397
    with training_args.strategy.scope():
        # region Load pretrained model
        # Set seed before initializing model
        set_seed(training_args.seed)
        #
        # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
        # download model & vocab.
        if checkpoint is None:
            model_path = model_args.model_name_or_path
Matt's avatar
Matt committed
398
        else:
399
400
401
402
403
404
            model_path = checkpoint
        model = TFAutoModelForSequenceClassification.from_pretrained(
            model_path,
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
405
            token=True if model_args.use_auth_token else None,
Matt's avatar
Matt committed
406
        )
407
408
        # endregion

Matt's avatar
Matt committed
409
        # region Convert data to a tf.data.Dataset
Matt's avatar
Matt committed
410
411
412
        dataset_options = tf.data.Options()
        dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
        num_replicas = training_args.strategy.num_replicas_in_sync
413

414
        tf_data = {}
415
416
417
418
419
420
421
422
423
        max_samples = {
            "train": data_args.max_train_samples,
            "validation": data_args.max_val_samples,
            "test": data_args.max_test_samples,
        }
        for key in ("train", "validation", "test"):
            if key not in datasets:
                tf_data[key] = None
                continue
Matt's avatar
Matt committed
424
425
426
427
428
429
430
            if (
                (key == "train" and not training_args.do_train)
                or (key == "validation" and not training_args.do_eval)
                or (key == "test" and not training_args.do_predict)
            ):
                tf_data[key] = None
                continue
431
432
433
434
            if key in ("train", "validation"):
                assert "label" in datasets[key].features, f"Missing labels from {key} data!"
            if key == "train":
                shuffle = True
Matt's avatar
Matt committed
435
                batch_size = training_args.per_device_train_batch_size * num_replicas
436
437
            else:
                shuffle = False
Matt's avatar
Matt committed
438
                batch_size = training_args.per_device_eval_batch_size * num_replicas
439
440
441
442
            samples_limit = max_samples[key]
            dataset = datasets[key]
            if samples_limit is not None:
                dataset = dataset.select(range(samples_limit))
Matt's avatar
Matt committed
443
444
445
446
447
448
449
450
451
452
453
454

            # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
            # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
            # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
            # yourself if you use this method, whereas they are automatically inferred from the model input names when
            # using model.prepare_tf_dataset()
            # For more info see the docs:
            # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
            # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

            data = model.prepare_tf_dataset(
                dataset,
455
                shuffle=shuffle,
456
                batch_size=batch_size,
Matt's avatar
Matt committed
457
                tokenizer=tokenizer,
458
            )
Matt's avatar
Matt committed
459
            data = data.with_options(dataset_options)
460
461
462
            tf_data[key] = data
        # endregion

Matt's avatar
Matt committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        # region Optimizer, loss and compilation

        if training_args.do_train:
            num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs
            if training_args.warmup_steps > 0:
                num_warmup_steps = training_args.warmup_steps
            elif training_args.warmup_ratio > 0:
                num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
            else:
                num_warmup_steps = 0

            optimizer, schedule = create_optimizer(
                init_lr=training_args.learning_rate,
                num_train_steps=num_train_steps,
                num_warmup_steps=num_warmup_steps,
                adam_beta1=training_args.adam_beta1,
                adam_beta2=training_args.adam_beta2,
                adam_epsilon=training_args.adam_epsilon,
                weight_decay_rate=training_args.weight_decay,
                adam_global_clipnorm=training_args.max_grad_norm,
            )
        else:
            optimizer = None
        if is_regression:
            metrics = []
        else:
            metrics = ["accuracy"]
490
491
        # Transformers models compute the right loss for their task by default when labels are passed, and will
        # use this for training unless you specify your own loss function in compile().
Matt's avatar
Matt committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        model.compile(optimizer=optimizer, metrics=metrics)
        # endregion

        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            push_to_hub_model_id = f"{model_name}-finetuned-text-classification"

        model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}

        if training_args.push_to_hub:
            callbacks = [
                PushToHubCallback(
                    output_dir=training_args.output_dir,
507
508
                    hub_model_id=push_to_hub_model_id,
                    hub_token=training_args.push_to_hub_token,
Matt's avatar
Matt committed
509
510
511
512
513
514
515
516
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            ]
        else:
            callbacks = []
        # endregion

517
518
519
520
521
522
523
524
        # region Training and validation
        if tf_data["train"] is not None:
            model.fit(
                tf_data["train"],
                validation_data=tf_data["validation"],
                epochs=int(training_args.num_train_epochs),
                callbacks=callbacks,
            )
Matt's avatar
Matt committed
525
        if tf_data["validation"] is not None:
526
527
528
            logger.info("Computing metrics on validation data...")
            if is_regression:
                loss = model.evaluate(tf_data["validation"])
Matt's avatar
Matt committed
529
                logger.info(f"Eval loss: {loss:.5f}")
530
531
            else:
                loss, accuracy = model.evaluate(tf_data["validation"])
Matt's avatar
Matt committed
532
533
534
535
536
537
538
539
                logger.info(f"Eval loss: {loss:.5f}, Eval accuracy: {accuracy * 100:.4f}%")
            if training_args.output_dir is not None:
                output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
                eval_dict = {"eval_loss": loss}
                if not is_regression:
                    eval_dict["eval_accuracy"] = accuracy
                with open(output_eval_file, "w") as writer:
                    writer.write(json.dumps(eval_dict))
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        # endregion

        # region Prediction
        if tf_data["test"] is not None:
            logger.info("Doing predictions on test dataset...")
            predictions = model.predict(tf_data["test"])["logits"]
            predicted_class = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
            output_test_file = os.path.join(training_args.output_dir, "test_results.txt")
            with open(output_test_file, "w") as writer:
                writer.write("index\tprediction\n")
                for index, item in enumerate(predicted_class):
                    if is_regression:
                        writer.write(f"{index}\t{item:3.3f}\n")
                    else:
                        item = config.id2label[item]
                        writer.write(f"{index}\t{item}\n")
            logger.info(f"Wrote predictions to {output_test_file}!")
        # endregion

Matt's avatar
Matt committed
559
560
561
        if training_args.output_dir is not None and not training_args.push_to_hub:
            # If we're not pushing to hub, at least save a local copy when we're done
            model.save_pretrained(training_args.output_dir)
Matt's avatar
Matt committed
562
563
564
565


if __name__ == "__main__":
    main()