run_flax_glue.py 26.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 馃 Flax Transformers model for sequence classification on GLUE."""
Suraj Patil's avatar
Suraj Patil committed
17
import json
18
import logging
19
import math
20
21
import os
import random
22
import sys
23
import time
24
from dataclasses import dataclass, field
25
from pathlib import Path
26
from typing import Any, Callable, Dict, Optional, Tuple
27
28

import datasets
29
import evaluate
30
31
import jax
import jax.numpy as jnp
32
import numpy as np
33
import optax
34
from datasets import load_dataset
35
from flax import struct, traverse_util
36
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
37
from flax.training import train_state
38
from flax.training.common_utils import get_metrics, onehot, shard
39
from huggingface_hub import Repository, create_repo
40
41
42
from tqdm import tqdm

import transformers
Suraj Patil's avatar
Suraj Patil committed
43
44
45
46
from transformers import (
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForSequenceClassification,
47
    HfArgumentParser,
Suraj Patil's avatar
Suraj Patil committed
48
    PretrainedConfig,
49
    TrainingArguments,
Suraj Patil's avatar
Suraj Patil committed
50
51
    is_tensorboard_available,
)
52
from transformers.utils import check_min_version, send_example_telemetry
53
54
55


logger = logging.getLogger(__name__)
56
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
57
check_min_version("4.32.0.dev0")
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Array = Any
Dataset = datasets.arrow_dataset.Dataset
PRNGKey = Any


task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_slow_tokenizer: Optional[bool] = field(
        default=False,
        metadata={"help": "If passed, will use a slow tokenizer (not backed by the 馃 Tokenizers library)."},
    )
    cache_dir: Optional[str] = field(
97
        default=None,
98
99
100
101
102
103
104
105
106
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
107
            "help": (
108
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
109
110
                "with private models)."
            )
111
        },
112
    )
113
114
115
116
117
118
119
120
121
122


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    task_name: Optional[str] = field(
        default=None, metadata={"help": f"The name of the glue task to train on. choices {list(task_to_keys.keys())}"}
123
    )
124
125
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
126
    )
127
128
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
129
    )
130
131
132
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
133
    )
134
135
136
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
137
    )
138
139
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
140
    )
141
142
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
143
    )
144
145
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
146
    )
147
    preprocessing_num_workers: Optional[int] = field(
148
        default=None,
149
        metadata={"help": "The number of processes to use for the preprocessing."},
150
    )
151
152
153
    max_seq_length: int = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
            "help": (
                "The maximum total input sequence length after tokenization. If set, sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
158
        },
159
    )
160
161
162
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
165
166
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
167
        },
168
    )
169
170
171
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
176
177
178
179
180
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
181
182
183
184
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
185
        },
186
    )
187

188
189
190
191
192
193
194
195
196
197
198
    def __post_init__(self):
        if self.task_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower() if type(self.task_name) == str else self.task_name
199
200
201
202
203
204
205


def create_train_state(
    model: FlaxAutoModelForSequenceClassification,
    learning_rate_fn: Callable[[int], float],
    is_regression: bool,
    num_labels: int,
206
    weight_decay: float,
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
) -> train_state.TrainState:
    """Create initial training state."""

    class TrainState(train_state.TrainState):
        """Train state with an Optax optimizer.

        The two functions below differ depending on whether the task is classification
        or regression.

        Args:
          logits_fn: Applied to last layer to obtain the logits.
          loss_fn: Function to compute the loss.
        """

        logits_fn: Callable = struct.field(pytree_node=False)
        loss_fn: Callable = struct.field(pytree_node=False)

224
225
226
227
228
229
    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
230
231
        # find out all LayerNorm parameters
        layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
232
233
234
235
236
237
        layer_norm_named_params = {
            layer[-2:]
            for layer_norm_name in layer_norm_candidates
            for layer in flat_params.keys()
            if layer_norm_name in "".join(layer).lower()
        }
238
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
239
240
241
242
        return traverse_util.unflatten_dict(flat_mask)

    tx = optax.adamw(
        learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    )

    if is_regression:

        def mse_loss(logits, labels):
            return jnp.mean((logits[..., 0] - labels) ** 2)

        return TrainState.create(
            apply_fn=model.__call__,
            params=model.params,
            tx=tx,
            logits_fn=lambda logits: logits[..., 0],
            loss_fn=mse_loss,
        )
    else:  # Classification.

        def cross_entropy_loss(logits, labels):
            xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels))
            return jnp.mean(xentropy)

        return TrainState.create(
            apply_fn=model.__call__,
            params=model.params,
            tx=tx,
            logits_fn=lambda logits: logits.argmax(-1),
            loss_fn=cross_entropy_loss,
        )


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int):
    """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices."""
    steps_per_epoch = len(dataset) // batch_size
    perms = jax.random.permutation(rng, len(dataset))
    perms = perms[: steps_per_epoch * batch_size]  # Skip incomplete batch.
    perms = perms.reshape((steps_per_epoch, batch_size))

    for perm in perms:
        batch = dataset[perm]
295
        batch = {k: np.array(v) for k, v in batch.items()}
296
297
298
299
300
301
        batch = shard(batch)

        yield batch


def glue_eval_data_collator(dataset: Dataset, batch_size: int):
302
303
304
305
306
307
308
309
    """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop."""
    batch_idx = np.arange(len(dataset))

    steps_per_epoch = math.ceil(len(dataset) / batch_size)
    batch_idx = np.array_split(batch_idx, steps_per_epoch)

    for idx in batch_idx:
        batch = dataset[idx]
310
        batch = {k: np.array(v) for k, v in batch.items()}
311
312
313
314
315

        yield batch


def main():
316
317
318
319
320
321
322
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
323

324
325
326
327
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue", model_args, data_args, framework="flax")

328
329
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
330
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
331
332
333
334
335
336
337
338
339
340
341
342
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

343
    # Handle the repository creation
344
    if training_args.push_to_hub:
345
346
347
348
349
350
351
352
        # Retrieve of infer repo_name
        repo_name = training_args.hub_model_id
        if repo_name is None:
            repo_name = Path(training_args.output_dir).absolute().name
        # Create repo and retrieve repo_id
        repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
        # Clone repo locally
        repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
353

354
355
356
357
358
359
360
361
362
363
364
365
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.

    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
366
    if data_args.task_name is not None:
367
        # Downloading and loading a dataset from the hub.
368
369
370
371
372
        raw_datasets = load_dataset(
            "glue",
            data_args.task_name,
            use_auth_token=True if model_args.use_auth_token else None,
        )
373
374
375
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
376
377
378
379
380
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1]
381
382
383
384
385
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            use_auth_token=True if model_args.use_auth_token else None,
        )
386
387
388
389
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
390
391
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
410
    config = AutoConfig.from_pretrained(
411
412
413
        model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
414
        token=True if model_args.use_auth_token else None,
415
416
    )
    tokenizer = AutoTokenizer.from_pretrained(
417
418
        model_args.model_name_or_path,
        use_fast=not model_args.use_slow_tokenizer,
419
        token=True if model_args.use_auth_token else None,
420
421
422
423
    )
    model = FlaxAutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        config=config,
424
        token=True if model_args.use_auth_token else None,
425
    )
426
427

    # Preprocessing the datasets
428
429
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
445
        and data_args.task_name is not None
446
447
448
449
        and not is_regression
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
450
        if sorted(label_name_to_id.keys()) == sorted(label_list):
451
452
453
454
455
456
457
458
            logger.info(
                f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
                "Using it!"
            )
            label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
459
                f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}."
460
461
                "\nIgnoring the model labels as a result.",
            )
462
    elif data_args.task_name is None:
463
464
465
466
467
468
469
        label_to_id = {v: i for i, v in enumerate(label_list)}

    def preprocess_function(examples):
        # Tokenize the texts
        texts = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
470
        result = tokenizer(*texts, padding="max_length", max_length=data_args.max_seq_length, truncation=True)
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

        if "label" in examples:
            if label_to_id is not None:
                # Map labels to IDs (not necessary for GLUE tasks)
                result["labels"] = [label_to_id[l] for l in examples["label"]]
            else:
                # In all cases, rename the column to labels because the model will expect that.
                result["labels"] = examples["label"]
        return result

    processed_datasets = raw_datasets.map(
        preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
    )

    train_dataset = processed_datasets["train"]
486
    eval_dataset = processed_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
487
488
489
490
491
492

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # Define a summary writer
Suraj Patil's avatar
Suraj Patil committed
493
494
495
496
497
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

498
499
            summary_writer = SummaryWriter(training_args.output_dir)
            summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)})
Suraj Patil's avatar
Suraj Patil committed
500
501
502
503
504
505
506
507
508
509
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run pip install tensorboard to enable."
        )
510

511
    def write_train_metric(summary_writer, train_metrics, train_time, step):
512
513
514
515
516
517
518
519
        summary_writer.scalar("train_time", train_time, step)

        train_metrics = get_metrics(train_metrics)
        for key, vals in train_metrics.items():
            tag = f"train_{key}"
            for i, val in enumerate(vals):
                summary_writer.scalar(tag, val, step - len(vals) + i + 1)

520
    def write_eval_metric(summary_writer, eval_metrics, step):
521
522
523
        for metric_name, value in eval_metrics.items():
            summary_writer.scalar(f"eval_{metric_name}", value, step)

524
525
    num_epochs = int(training_args.num_train_epochs)
    rng = jax.random.PRNGKey(training_args.seed)
526
    dropout_rngs = jax.random.split(rng, jax.local_device_count())
527

528
529
530
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count()
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = per_device_eval_batch_size * jax.device_count()
531
532

    learning_rate_fn = create_learning_rate_fn(
533
534
535
536
537
        len(train_dataset),
        train_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
538
539
    )

540
    state = create_train_state(
541
        model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=training_args.weight_decay
542
    )
543
544
545
546
547
548

    # define step functions
    def train_step(
        state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
    ) -> Tuple[train_state.TrainState, float]:
        """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
549
        dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
550
551
552
553
554
        targets = batch.pop("labels")

        def loss_fn(params):
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = state.loss_fn(logits, targets)
555
            return loss
556

557
558
        grad_fn = jax.value_and_grad(loss_fn)
        loss, grad = grad_fn(state.params)
559
560
561
        grad = jax.lax.pmean(grad, "batch")
        new_state = state.apply_gradients(grads=grad)
        metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
562
        return new_state, metrics, new_dropout_rng
563
564
565
566
567
568
569
570
571

    p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))

    def eval_step(state, batch):
        logits = state.apply_fn(**batch, params=state.params, train=False)[0]
        return state.logits_fn(logits)

    p_eval_step = jax.pmap(eval_step, axis_name="batch")

572
    if data_args.task_name is not None:
573
        metric = evaluate.load("glue", data_args.task_name)
574
    else:
575
        metric = evaluate.load("accuracy")
576
577
578
579

    logger.info(f"===== Starting training ({num_epochs} epochs) =====")
    train_time = 0

580
581
582
    # make sure weights are replicated on each device
    state = replicate(state)

583
584
585
586
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_steps = steps_per_epoch * num_epochs
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (0/{num_epochs})", position=0)
    for epoch in epochs:
587
588
        train_start = time.time()
        train_metrics = []
589
590

        # Create sampling rng
591
        rng, input_rng = jax.random.split(rng)
592
593

        # train
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        train_loader = glue_train_data_collator(input_rng, train_dataset, train_batch_size)
        for step, batch in enumerate(
            tqdm(
                train_loader,
                total=steps_per_epoch,
                desc="Training...",
                position=1,
            ),
        ):
            state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs)
            train_metrics.append(train_metric)

            cur_step = (epoch * steps_per_epoch) + (step + 1)

            if cur_step % training_args.logging_steps == 0 and cur_step > 0:
                # Save metrics
                train_metric = unreplicate(train_metric)
                train_time += time.time() - train_start
                if has_tensorboard and jax.process_index() == 0:
                    write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                epochs.write(
Sylvain Gugger's avatar
Sylvain Gugger committed
616
617
                    f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:"
                    f" {train_metric['learning_rate']})"
618
619
620
621
622
623
624
625
626
                )

                train_metrics = []

            if (cur_step % training_args.eval_steps == 0 or cur_step % steps_per_epoch == 0) and cur_step > 0:
                # evaluate
                eval_loader = glue_eval_data_collator(eval_dataset, eval_batch_size)
                for batch in tqdm(
                    eval_loader,
627
                    total=math.ceil(len(eval_dataset) / eval_batch_size),
628
629
630
631
                    desc="Evaluating ...",
                    position=2,
                ):
                    labels = batch.pop("labels")
632
633
634
635
                    predictions = pad_shard_unpad(p_eval_step)(
                        state, batch, min_device_batch=per_device_eval_batch_size
                    )
                    metric.add_batch(predictions=np.array(predictions), references=labels)
636
637
638
639
640
641

                eval_metric = metric.compute()

                logger.info(f"Step... ({cur_step}/{total_steps} | Eval metrics: {eval_metric})")

                if has_tensorboard and jax.process_index() == 0:
642
                    write_eval_metric(summary_writer, eval_metric, cur_step)
643
644
645
646
647
648
649
650
651
652

            if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps):
                # save checkpoint after each epoch and push checkpoint to the hub
                if jax.process_index() == 0:
                    params = jax.device_get(unreplicate(state.params))
                    model.save_pretrained(training_args.output_dir, params=params)
                    tokenizer.save_pretrained(training_args.output_dir)
                    if training_args.push_to_hub:
                        repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
            epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}"
653

Suraj Patil's avatar
Suraj Patil committed
654
655
656
    # save the eval metrics in json
    if jax.process_index() == 0:
        eval_metric = {f"eval_{metric_name}": value for metric_name, value in eval_metric.items()}
657
        path = os.path.join(training_args.output_dir, "eval_results.json")
Suraj Patil's avatar
Suraj Patil committed
658
659
660
        with open(path, "w") as f:
            json.dump(eval_metric, f, indent=4, sort_keys=True)

661
662
663

if __name__ == "__main__":
    main()