run_xnli.py 26.7 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
17
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
18
19
20
21
22
23
24
25
26
27


import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
VictorSanh's avatar
VictorSanh committed
29
30
31
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

32
33
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
34
    AdamW,
35
36
37
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
38
    get_linear_schedule_with_warmup,
39
)
Aymeric Augustin's avatar
Aymeric Augustin committed
40
from transformers import glue_convert_examples_to_features as convert_examples_to_features
41
42
43
from transformers import xnli_compute_metrics as compute_metrics
from transformers import xnli_output_modes as output_modes
from transformers import xnli_processors as processors
VictorSanh's avatar
VictorSanh committed
44

Aymeric Augustin's avatar
Aymeric Augustin committed
45
46
47

try:
    from torch.utils.tensorboard import SummaryWriter
48
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
49
50
    from tensorboardX import SummaryWriter

VictorSanh's avatar
VictorSanh committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

logger = logging.getLogger(__name__)


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
79
    no_decay = ["bias", "LayerNorm.weight"]
VictorSanh's avatar
VictorSanh committed
80
    optimizer_grouped_parameters = [
81
82
83
84
85
86
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
VictorSanh's avatar
VictorSanh committed
87
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
88
89
90
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
91
92

    # Check if saved optimizer or scheduler states exist
93
94
95
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
96
        # Load in optimizer and scheduler states
97
98
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
99

VictorSanh's avatar
VictorSanh committed
100
101
102
103
104
105
106
107
108
109
110
111
112
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
113
114
115
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
VictorSanh's avatar
VictorSanh committed
116
117
118
119
120
121

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
122
123
124
125
126
127
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
VictorSanh's avatar
VictorSanh committed
128
129
130
131
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
132
133
134
135
136
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
137
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
138
139
140
141
142
143
144
145
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

VictorSanh's avatar
VictorSanh committed
146
147
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
148
149
150
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
151
    set_seed(args)  # Added here for reproductibility
VictorSanh's avatar
VictorSanh committed
152
153
154
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
155
156
157
158
159
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

VictorSanh's avatar
VictorSanh committed
160
161
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
162
163
164
165
166
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert"] else None
                )  # XLM and DistilBERT don't use segment_ids
VictorSanh's avatar
VictorSanh committed
167
168
169
170
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
171
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
VictorSanh's avatar
VictorSanh committed
172
173
174
175
176
177
178
179
180
181
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
182
            if (step + 1) % args.gradient_accumulation_steps == 0:
VictorSanh's avatar
VictorSanh committed
183
184
185
186
187
188
189
190
191
192
193
194
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
195
196
197
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
VictorSanh's avatar
VictorSanh committed
198
199
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
200
201
202
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
VictorSanh's avatar
VictorSanh committed
203
204
205
206
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
207
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
VictorSanh's avatar
VictorSanh committed
208
209
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
210
211
212
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
VictorSanh's avatar
VictorSanh committed
213
                    model_to_save.save_pretrained(output_dir)
214
215
                    tokenizer.save_pretrained(output_dir)

216
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
VictorSanh's avatar
VictorSanh committed
217
218
                    logger.info("Saving model checkpoint to %s", output_dir)

219
220
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
221
222
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

VictorSanh's avatar
VictorSanh committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    eval_task_names = (args.task_name,)
    eval_outputs_dirs = (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
249
        eval_sampler = SequentialSampler(eval_dataset)
VictorSanh's avatar
VictorSanh committed
250
251
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

252
        # multi-gpu eval
253
        if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
254
255
            model = torch.nn.DataParallel(model)

VictorSanh's avatar
VictorSanh committed
256
257
258
259
260
261
262
263
264
265
266
267
268
        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
269
270
271
272
273
                inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
                if args.model_type != "distilbert":
                    inputs["token_type_ids"] = (
                        batch[2] if args.model_type in ["bert"] else None
                    )  # XLM and DistilBERT don't use segment_ids
VictorSanh's avatar
VictorSanh committed
274
275
276
277
278
279
280
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
281
                out_label_ids = inputs["labels"].detach().cpu().numpy()
VictorSanh's avatar
VictorSanh committed
282
283
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
284
                out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
VictorSanh's avatar
VictorSanh committed
285
286
287
288

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
VictorSanh's avatar
VictorSanh committed
289
        else:
290
            raise ValueError("No other `output_mode` for XNLI.")
VictorSanh's avatar
VictorSanh committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results {} *****".format(prefix))
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


def load_and_cache_examples(args, task, tokenizer, evaluate=False):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task](language=args.language, train_language=args.train_language)
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
311
312
313
314
315
316
317
318
319
320
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}_{}_{}".format(
            "test" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
            str(task),
            str(args.train_language if (not evaluate and args.train_language is not None) else args.language),
        ),
    )
VictorSanh's avatar
VictorSanh committed
321
322
323
324
325
326
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
327
328
329
330
        examples = (
            processor.get_test_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
        )
        features = convert_examples_to_features(
331
            examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=output_mode,
VictorSanh's avatar
VictorSanh committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    else:
347
        raise ValueError("No other `output_mode` for XNLI.")
VictorSanh's avatar
VictorSanh committed
348
349
350
351
352
353
354
355

    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
    return dataset


def main():
    parser = argparse.ArgumentParser()

356
    # Required parameters
357
358
359
360
361
362
363
364
365
366
367
368
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
369
        help="Path to pretrained model or model identifier from huggingface.co/models",
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    )
    parser.add_argument(
        "--language",
        default=None,
        type=str,
        required=True,
        help="Evaluation language. Also train language if `train_language` is set to None.",
    )
    parser.add_argument(
        "--train_language", default=None, type=str, help="Train language if is different of the evaluation language."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
VictorSanh's avatar
VictorSanh committed
388

389
    # Other parameters
390
391
392
393
394
395
396
397
398
399
400
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
401
        default=None,
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
Manuel Romero's avatar
Manuel Romero committed
432
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
433
434
435
436
437
438
439
440
441
442
443
444
445
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

446
447
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
VictorSanh's avatar
VictorSanh committed
477
478
    args = parser.parse_args()

479
480
481
482
483
484
485
486
487
488
489
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
VictorSanh's avatar
VictorSanh committed
490
491
492
493
494

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
495

VictorSanh's avatar
VictorSanh committed
496
497
498
499
500
501
502
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
503
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
VictorSanh's avatar
VictorSanh committed
504
505
506
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
507
        torch.distributed.init_process_group(backend="nccl")
VictorSanh's avatar
VictorSanh committed
508
509
510
511
        args.n_gpu = 1
    args.device = device

    # Setup logging
512
513
514
515
516
517
518
519
520
521
522
523
524
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
VictorSanh's avatar
VictorSanh committed
525
526
527
528
529

    # Set seed
    set_seed(args)

    # Prepare XNLI task
530
    args.task_name = "xnli"
VictorSanh's avatar
VictorSanh committed
531
532
533
534
535
536
537
538
539
540
541
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name](language=args.language, train_language=args.train_language)
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

542
    config = AutoConfig.from_pretrained(
543
544
545
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
546
        cache_dir=args.cache_dir,
547
    )
548
549
    args.model_type = config.model_type
    tokenizer = AutoTokenizer.from_pretrained(
550
551
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
552
        cache_dir=args.cache_dir,
553
    )
554
    model = AutoModelForSequenceClassification.from_pretrained(
555
556
557
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
558
        cache_dir=args.cache_dir,
559
    )
VictorSanh's avatar
VictorSanh committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
575
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
VictorSanh committed
576
577
578
579
580
581
582
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
583
584
585
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
VictorSanh's avatar
VictorSanh committed
586
587
588
589
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
590
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
VictorSanh's avatar
VictorSanh committed
591
592

        # Load a trained model and vocabulary that you have fine-tuned
593
594
        model = AutoModelForSequenceClassification.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
VictorSanh's avatar
VictorSanh committed
595
596
597
598
599
600
601
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
602
603
604
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
VictorSanh's avatar
VictorSanh committed
605
606
607
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
608
609
610
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

611
            model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
VictorSanh's avatar
VictorSanh committed
612
613
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
614
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
VictorSanh's avatar
VictorSanh committed
615
616
617
618
619
620
621
            results.update(result)

    return results


if __name__ == "__main__":
    main()