tokenization_utils.py 38.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
21
22
import json
import six
23
import copy
24
25
26
27
28
29
from io import open

from .file_utils import cached_path

logger = logging.getLogger(__name__)

30
31
SPECIAL_TOKENS_MAP_FILE = 'special_tokens_map.json'
ADDED_TOKENS_FILE = 'added_tokens.json'
32
TOKENIZER_CONFIG_FILE = 'tokenizer_config.json'
33
34

class PreTrainedTokenizer(object):
35
36
    """ Base class for all tokenizers.
    Handle all the shared methods for tokenization and special tokens as well as methods dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
37

38
    This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
39

40
41
42
43
44
    Class attributes (overridden by derived classes):

        - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string).
        - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file.
        - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size.
45
        - ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the ``from_pretrained()`` method.
46
47
48

    Parameters:

thomwolf's avatar
thomwolf committed
49
        - ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token`` and ``self.bos_token_id``
50

thomwolf's avatar
thomwolf committed
51
        - ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token`` and ``self.eos_token_id``
52

thomwolf's avatar
thomwolf committed
53
        - ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token`` and ``self.unk_token_id``
54

thomwolf's avatar
thomwolf committed
55
        - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token`` and ``self.sep_token_id``
56

thomwolf's avatar
thomwolf committed
57
        - ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token`` and ``self.pad_token_id``
58

thomwolf's avatar
thomwolf committed
59
        - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token`` and ``self.cls_token_id``
60

thomwolf's avatar
thomwolf committed
61
        - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
62

thomwolf's avatar
thomwolf committed
63
        - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``
64
65
66
    """
    vocab_files_names = {}
    pretrained_vocab_files_map = {}
67
    pretrained_init_configuration = {}
68
69
    max_model_input_sizes = {}

70
71
72
73
74
75
    SPECIAL_TOKENS_ATTRIBUTES = ["bos_token", "eos_token", "unk_token", "sep_token",
                                 "pad_token", "cls_token", "mask_token",
                                 "additional_special_tokens"]

    @property
    def bos_token(self):
76
        """ Beginning of sentence token (string). Log an error if used while not having been set. """
77
78
79
80
81
82
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self._bos_token

    @property
    def eos_token(self):
83
        """ End of sentence token (string). Log an error if used while not having been set. """
84
85
86
87
88
89
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self._eos_token

    @property
    def unk_token(self):
90
        """ Unknown token (string). Log an error if used while not having been set. """
91
92
93
94
95
96
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self._unk_token

    @property
    def sep_token(self):
97
        """ Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
98
99
100
101
102
103
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self._sep_token

    @property
    def pad_token(self):
104
        """ Padding token (string). Log an error if used while not having been set. """
105
106
107
108
109
110
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self._pad_token

    @property
    def cls_token(self):
111
        """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
112
113
114
115
116
117
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self._cls_token

    @property
    def mask_token(self):
118
        """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
119
120
121
122
123
124
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self._mask_token

    @property
    def additional_special_tokens(self):
125
        """ All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self._additional_special_tokens

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._bos_token)

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._eos_token)

    @property
    def unk_token_is(self):
        """ Id of the unknown token in the vocabulary. Log an error if used while not having been set. """
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._unk_token)

    @property
    def sep_token_id(self):
        """ Id of the separation token in the vocabulary. E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._sep_token)

    @property
    def pad_token_id(self):
        """ Id of the padding token in the vocabulary. Log an error if used while not having been set. """
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._pad_token)

    @property
    def cls_token_id(self):
        """ Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._cls_token)

    @property
    def mask_token_id(self):
        """ Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._mask_token)

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers). Log an error if used while not having been set. """
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self.convert_tokens_to_ids(self._additional_special_tokens)

218
219
220
221
222
223
224
225
226
227
228
    def __init__(self, max_len=None, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._additional_special_tokens = []

        self.max_len = max_len if max_len is not None else int(1e12)
229
230

        # Added tokens
231
232
233
        self.added_tokens_encoder = {}
        self.added_tokens_decoder = {}

234
235
236
237
        # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
        self.init_inputs = ()
        self.init_kwargs = {}

238
        for key, value in kwargs.items():
239
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
240
241
242
243
                if key == 'additional_special_tokens':
                    assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                else:
                    assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
244
245
246
                setattr(self, key, value)


247
248
    @classmethod
    def from_pretrained(cls, *inputs, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
249
250
        r"""
        Instantiate a :class:`~pytorch_transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer.
251

LysandreJik's avatar
Doc  
LysandreJik committed
252
        Args:
253
254
255
256
257
258
259
260
261
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.

262
263
264
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if they exists.

265
266
267
268
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
            inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.

            kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.

        Examples::

            # We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer

            # Download vocabulary from S3 and cache.
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

            # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')

            # If the tokenizer uses a single vocabulary file, you can point directly to this file
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')

            # You can link tokens to special vocabulary when instantiating
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
            # You should be sure '<unk>' is in the vocabulary when doing that.
            # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
            assert tokenizer.unk_token == '<unk>'

        """
293
294
        return cls._from_pretrained(*inputs, **kwargs)

295

296
    @classmethod
297
    def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
thomwolf's avatar
thomwolf committed
298
        cache_dir = kwargs.pop('cache_dir', None)
299
        force_download = kwargs.pop('force_download', False)
300
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
301

302
303
        s3_models = list(cls.max_model_input_sizes.keys())
        vocab_files = {}
304
        init_configuration = {}
305
        if pretrained_model_name_or_path in s3_models:
thomwolf's avatar
thomwolf committed
306
            # Get the vocabulary from AWS S3 bucket
307
308
            for file_id, map_list in cls.pretrained_vocab_files_map.items():
                vocab_files[file_id] = map_list[pretrained_model_name_or_path]
309
310
            if cls.pretrained_init_configuration and pretrained_model_name_or_path in cls.pretrained_init_configuration:
                init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path]
311
        else:
thomwolf's avatar
thomwolf committed
312
            # Get the vocabulary from local files
313
314
315
316
317
            logger.info(
                "Model name '{}' not found in model shortcut name list ({}). "
                "Assuming '{}' is a path or url to a directory containing tokenizer files.".format(
                    pretrained_model_name_or_path, ', '.join(s3_models),
                    pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
318
319
320

            # Look for the tokenizer main vocabulary files
            for file_id, file_name in cls.vocab_files_names.items():
321
                if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
322
                    # If a directory is provided we look for the standard filenames
323
324
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                else:
thomwolf's avatar
thomwolf committed
325
                    # If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file)
326
327
                    full_file_name = pretrained_model_name_or_path
                if not os.path.exists(full_file_name):
328
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
329
330
                    full_file_name = None
                vocab_files[file_id] = full_file_name
thomwolf's avatar
thomwolf committed
331
332

            # Look for the additional tokens files
333
334
335
336
            additional_files_names = {'added_tokens_file': ADDED_TOKENS_FILE,
                                      'special_tokens_map_file': SPECIAL_TOKENS_MAP_FILE,
                                      'tokenizer_config_file': TOKENIZER_CONFIG_FILE,
                                      }
thomwolf's avatar
thomwolf committed
337
338
339
340
341
342

            # If a path to a file was provided, get the parent directory
            saved_directory = pretrained_model_name_or_path
            if os.path.exists(saved_directory) and not os.path.isdir(saved_directory):
                saved_directory = os.path.dirname(saved_directory)

343
            for file_id, file_name in additional_files_names.items():
thomwolf's avatar
thomwolf committed
344
345
346
347
348
349
                full_file_name = os.path.join(saved_directory, file_name)
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

350
351
352
353
354
355
356
357
            if all(full_file_name is None for full_file_name in vocab_files.values()):
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find tokenizer files"
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, ))
                return None
358
359

        # Get files from url, cache, or disk depending on the case
360
361
362
363
364
365
        try:
            resolved_vocab_files = {}
            for file_id, file_path in vocab_files.items():
                if file_path is None:
                    resolved_vocab_files[file_id] = None
                else:
366
                    resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
367
        except EnvironmentError as e:
368
369
370
371
372
373
374
375
376
            if pretrained_model_name_or_path in s3_models:
                logger.error("Couldn't reach server to download vocabulary.")
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, str(vocab_files.keys())))
377
            raise e
378
379
380
381
382
383
384
385

        for file_id, file_path in vocab_files.items():
            if file_path == resolved_vocab_files[file_id]:
                logger.info("loading file {}".format(file_path))
            else:
                logger.info("loading file {} from cache at {}".format(
                    file_path, resolved_vocab_files[file_id]))

386
387
388
389
390
        # Prepare tokenizer initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        tokenizer_config_file = resolved_vocab_files.pop('tokenizer_config_file', None)
        if tokenizer_config_file is not None:
            init_kwargs = json.load(open(tokenizer_config_file, encoding="utf-8"))
391
            saved_init_inputs = init_kwargs.pop('init_inputs', ())
392
393
394
395
396
397
            if not init_inputs:
                init_inputs = saved_init_inputs
        else:
            init_kwargs = init_configuration

        # Update with newly provided kwargs
398
399
        init_kwargs.update(kwargs)

400
        # Set max length if needed
401
402
403
404
        if pretrained_model_name_or_path in cls.max_model_input_sizes:
            # if we're using a pretrained model, ensure the tokenizer
            # wont index sequences longer than the number of positional embeddings
            max_len = cls.max_model_input_sizes[pretrained_model_name_or_path]
405
            if max_len is not None and isinstance(max_len, (int, float)):
406
                init_kwargs['max_len'] = min(init_kwargs.get('max_len', int(1e12)), max_len)
407

408
        # Merge resolved_vocab_files arguments in init_kwargs.
409
410
        added_tokens_file = resolved_vocab_files.pop('added_tokens_file', None)
        special_tokens_map_file = resolved_vocab_files.pop('special_tokens_map_file', None)
thomwolf's avatar
thomwolf committed
411
        for args_name, file_path in resolved_vocab_files.items():
412
413
            if args_name not in init_kwargs:
                init_kwargs[args_name] = file_path
414
415
416
        if special_tokens_map_file is not None:
            special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8"))
            for key, value in special_tokens_map.items():
417
418
                if key not in init_kwargs:
                    init_kwargs[key] = value
thomwolf's avatar
thomwolf committed
419

420
        # Instantiate tokenizer.
421
422
423
424
425
        tokenizer = cls(*init_inputs, **init_kwargs)

        # Save inputs and kwargs for saving and re-loading with ``save_pretrained``
        tokenizer.init_inputs = init_inputs
        tokenizer.init_kwargs = init_kwargs
426

427
428
        # Add supplementary tokens.
        if added_tokens_file is not None:
thomwolf's avatar
thomwolf committed
429
            added_tok_encoder = json.load(open(added_tokens_file, encoding="utf-8"))
430
431
432
433
            added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
            tokenizer.added_tokens_encoder.update(added_tok_encoder)
            tokenizer.added_tokens_decoder.update(added_tok_decoder)

434
435
        return tokenizer

thomwolf's avatar
thomwolf committed
436

437
    def save_pretrained(self, save_directory):
438
439
440
441
442
443
444
        """ Save the tokenizer vocabulary files together with:
                - added tokens,
                - special-tokens-to-class-attributes-mapping,
                - tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert).

            This won't save modifications other than (added tokens and special token mapping) you may have
            applied to the tokenizer after the instantion (e.g. modifying tokenizer.do_lower_case after creation).
445
446

            This method make sure the full tokenizer can then be re-loaded using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
447
448
449
450
451
452
453
        """
        if not os.path.isdir(save_directory):
            logger.error("Saving directory ({}) should be a directory".format(save_directory))
            return

        special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE)
        added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE)
454
455
456
457
        tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE)

        tokenizer_config = copy.deepcopy(self.init_kwargs)
        tokenizer_config['init_inputs'] = copy.deepcopy(self.init_inputs)
458
459
        for file_id in self.vocab_files_names.keys():
            tokenizer_config.pop(file_id, None)
460
461
462

        with open(tokenizer_config_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(tokenizer_config, ensure_ascii=False))
463
464
465
466
467

        with open(special_tokens_map_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.special_tokens_map, ensure_ascii=False))

        with open(added_tokens_file, 'w', encoding='utf-8') as f:
thomwolf's avatar
thomwolf committed
468
            if self.added_tokens_encoder:
469
                out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False)
thomwolf's avatar
thomwolf committed
470
471
472
            else:
                out_str = u"{}"
            f.write(out_str)
473
474
475
476
477
478
479

        vocab_files = self.save_vocabulary(save_directory)

        return vocab_files + (special_tokens_map_file, added_tokens_file)


    def save_vocabulary(self, save_directory):
480
        """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
481
            and special token mappings.
482
483

            Please use :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
484
        """
thomwolf's avatar
thomwolf committed
485
486
        raise NotImplementedError

487
488

    def vocab_size(self):
489
        """ Size of the base vocabulary (without the added tokens) """
thomwolf's avatar
thomwolf committed
490
491
        raise NotImplementedError

492
493

    def __len__(self):
494
        """ Size of the full vocabulary with the added tokens """
495
496
497
498
        return self.vocab_size + len(self.added_tokens_encoder)


    def add_tokens(self, new_tokens):
LysandreJik's avatar
Doc  
LysandreJik committed
499
500
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
501
502
        vocabulary, they are added to it with indices starting from length of the current vocabulary.

LysandreJik's avatar
Doc  
LysandreJik committed
503
504
        Args:
            new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
505

LysandreJik's avatar
Doc  
LysandreJik committed
506
507
        Returns:
            Number of tokens added to the vocabulary.
508
509
510
511
512
513
514
515
516
517

        Examples::

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')

            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
518
519
520
521
522
523
        """
        if not new_tokens:
            return 0

        to_add_tokens = []
        for token in new_tokens:
524
            assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode))
thomwolf's avatar
thomwolf committed
525
526
            if token != self.unk_token and \
                    self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token):
527
528
529
530
531
532
533
534
535
536
537
538
                to_add_tokens.append(token)
                logger.info("Adding %s to the vocabulary", token)

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens))
        added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        return len(to_add_tokens)


    def add_special_tokens(self, special_tokens_dict):
LysandreJik's avatar
Doc  
LysandreJik committed
539
540
541
542
        """
        Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them
        to class attributes. If special tokens are NOT in the vocabulary, they are added
        to it (indexed starting from the last index of the current vocabulary).
543

thomwolf's avatar
thomwolf committed
544
545
546
547
548
549
550
        Using `add_special_tokens` will ensure your special tokens can be used in several ways:

        - special tokens are carefully handled by the tokenizer (they are never split)
        - you can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts.

        When possible, special tokens are already registered for provided pretrained models (ex: BertTokenizer cls_token is already registered to be '[CLS]' and XLM's one is also registered to be '</s>')

LysandreJik's avatar
Doc  
LysandreJik committed
551
552
553
554
        Args:
            special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes:
                [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``,
                ``additional_special_tokens``].
555

LysandreJik's avatar
Doc  
LysandreJik committed
556
                Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
557

LysandreJik's avatar
Doc  
LysandreJik committed
558
559
        Returns:
            Number of tokens added to the vocabulary.
560
561
562
563
564
565
566
567
568
569
570
571
572
573

        Examples::

            # Let's see how to add a new classification token to GPT-2
            tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            model = GPT2Model.from_pretrained('gpt2')

            special_tokens_dict = {'cls_token': '<CLS>'}

            num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.

            assert tokenizer.cls_token == '<CLS>'
574
575
576
577
        """
        if not special_tokens_dict:
            return 0

578
        added_tokens = 0
579
        for key, value in special_tokens_dict.items():
580
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES
581
582
583
584
585
586
            if key == 'additional_special_tokens':
                assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                added_tokens += self.add_tokens(value)
            else:
                assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
                added_tokens += self.add_tokens([value])
587
588
589
            logger.info("Assigning %s to the %s key of the tokenizer", value, key)
            setattr(self, key, value)

590
        return added_tokens
591
592
593
594
595
596
597
598

    def tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Take care of added tokens.
        """
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                sub_text = sub_text.strip()
                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

617
618
619
620
621
        def split_on_tokens(tok_list, text):
            if not text:
                return []
            if not tok_list:
                return self._tokenize(text, **kwargs)
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.added_tokens_encoder \
                            and sub_text not in self.all_special_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text

            return sum((self._tokenize(token, **kwargs) if token not \
                    in self.added_tokens_encoder and token not in self.all_special_tokens \
                    else [token] for token in tokenized_text), [])
638

639
        added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens
640
641
642
643
644
645
646
647
        tokenized_text = split_on_tokens(added_tokens, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

648
            Do NOT take care of added tokens.
649
        """
thomwolf's avatar
thomwolf committed
650
651
        raise NotImplementedError

652
    def convert_tokens_to_ids(self, tokens):
653
654
        """ Converts a single token, or a sequence of tokens, (str/unicode) in a single integer id
            (resp. a sequence of ids), using the vocabulary.
655
656
        """
        if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)):
657
            return self._convert_token_to_id_with_added_voc(tokens)
658
659
660

        ids = []
        for token in tokens:
661
            ids.append(self._convert_token_to_id_with_added_voc(token))
662
663
664
665
666
667
        if len(ids) > self.max_len:
            logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
                           "for this model ({} > {}). Running this sequence through the model will result in "
                           "indexing errors".format(len(ids), self.max_len))
        return ids

668
    def _convert_token_to_id_with_added_voc(self, token):
669
670
671
672
673
        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
thomwolf's avatar
thomwolf committed
674
675
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
676
    def encode(self, text, text_pair=None, add_special_tokens=False, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
677
678
        """
        Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
679
        
LysandreJik's avatar
Doc  
LysandreJik committed
680
681
682
683
684
685
686
        Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``.

        Args:
            text: The first sequence to be encoded.
            text_pair: Optional second sequence to be encoded.
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
thomwolf's avatar
thomwolf committed
687
            **kwargs: passed to the `self.tokenize()` method
688
        """
LysandreJik's avatar
LysandreJik committed
689
        if text_pair is None:
690
            if add_special_tokens:
thomwolf's avatar
thomwolf committed
691
                return self.add_special_tokens_single_sentence(self.convert_tokens_to_ids(self.tokenize(text, **kwargs)))
692
            else:
thomwolf's avatar
thomwolf committed
693
                return self.convert_tokens_to_ids(self.tokenize(text, **kwargs))
694

thomwolf's avatar
thomwolf committed
695
696
        first_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text, **kwargs)]
        second_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text_pair, **kwargs)]
697

698
699
700
701
        if add_special_tokens:
            return self.add_special_tokens_sentences_pair(first_sentence_tokens, second_sentence_tokens)
        else:
            return first_sentence_tokens, second_sentence_tokens
702

703
    def add_special_tokens_single_sentence(self, token_ids):
LysandreJik's avatar
LysandreJik committed
704
705
        logger.warning("This tokenizer does not make use of special tokens. The sequence has been returned with no modification.")
        return token_ids
706

707
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
LysandreJik's avatar
LysandreJik committed
708
709
        logger.warning("This tokenizer does not make use of special tokens. The two sequences have been concatenated.")
        return token_ids_0 + token_ids_1
710

711
712
713
714
715
716
717
718
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """ Converts a single index or a sequence of indices (integers) in a token "
            (resp.) a sequence of tokens (str/unicode), using the vocabulary and added tokens.

            Args:
                skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
        """
        if isinstance(ids, int):
719
720
721
722
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
723
724
725
726
727
728
729
730
731
732
733
        tokens = []
        for index in ids:
            if index in self.all_special_ids and skip_special_tokens:
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index):
thomwolf's avatar
thomwolf committed
734
735
        raise NotImplementedError

736
737
738
739
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string.
            The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
            but we often want to remove sub-word tokenization artifacts at the same time.
740
        """
741
        return ' '.join(self.convert_ids_to_tokens(tokens))
742
743

    def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
LysandreJik's avatar
Doc  
LysandreJik committed
744
745
746
        """
        Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
        with options to remove special tokens and clean up tokenization spaces.
747
        Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.
748
749
        """
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
750
        text = self.convert_tokens_to_string(filtered_tokens)
751

752
753
754
        if self._sep_token is not None and self._sep_token in text:
            text = text.replace(self._cls_token, self._sep_token)
            split_text = list(filter(lambda sentence: len(sentence) > 0, text.split(self._sep_token)))
755
756
757
758
759
760
761
762
763
764
765
            if clean_up_tokenization_spaces:
                clean_text = [self.clean_up_tokenization(text) for text in split_text]
                return clean_text
            else:
                return split_text
        else:
            if clean_up_tokenization_spaces:
                clean_text = self.clean_up_tokenization(text)
                return clean_text
            else:
                return text
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

    @property
    def special_tokens_map(self):
        """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their
            values ('<unk>', '<cls>'...)
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self):
        """ List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes
            (cls_token, unk_token...).
        """
        all_toks = []
        set_attr = self.special_tokens_map
        for attr_value in set_attr.values():
            all_toks = all_toks + (attr_value if isinstance(attr_value, (list, tuple)) else [attr_value])
        all_toks = list(set(all_toks))
        return all_toks

    @property
    def all_special_ids(self):
        """ List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to
            class attributes (cls_token, unk_token...).
        """
        all_toks = self.all_special_tokens
797
        all_ids = list(self._convert_token_to_id(t) for t in all_toks)
798
799
        return all_ids

thomwolf's avatar
thomwolf committed
800
801
    @staticmethod
    def clean_up_tokenization(out_string):
802
803
        """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms.
        """
thomwolf's avatar
thomwolf committed
804
805
806
807
        out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
                        ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
                        ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
        return out_string