modeling_gptj.py 46.7 KB
Newer Older
Stella Biderman's avatar
Stella Biderman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
""" PyTorch GPT-J model."""
Stella Biderman's avatar
Stella Biderman committed
16

17
from typing import Optional, Tuple, Union
Stella Biderman's avatar
Stella Biderman committed
18
19
20
21

import torch
import torch.utils.checkpoint
from torch import nn
22
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
Stella Biderman's avatar
Stella Biderman committed
23
24

from ...activations import ACT2FN
25
26
27
28
29
30
from ...modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
)
Stella Biderman's avatar
Stella Biderman committed
31
from ...modeling_utils import PreTrainedModel
32
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
Stella Biderman's avatar
Stella Biderman committed
33
34
35
36
37
38
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_gptj import GPTJConfig


logger = logging.get_logger(__name__)

39
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
Stella Biderman's avatar
Stella Biderman committed
40
41
42
_CONFIG_FOR_DOC = "GPTJConfig"
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"

43
44
45
46
47
48
49
50
51
_CHECKPOINT_FOR_QA = "ydshieh/tiny-random-gptj-for-question-answering"
_QA_EXPECTED_OUTPUT = "' was Jim Henson?Jim Henson was a n'"
_QA_EXPECTED_LOSS = 3.13

_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ydshieh/tiny-random-gptj-for-sequence-classification"
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'"
_SEQ_CLASS_EXPECTED_LOSS = 0.76


Stella Biderman's avatar
Stella Biderman committed
52
53
54
55
56
57
58
59
60
61
62
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "EleutherAI/gpt-j-6B",
    # See all GPT-J models at https://huggingface.co/models?filter=gptj
]


def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
    dim = x.shape[-1]
    if seq_len is None:
        seq_len = x.shape[seq_dim]
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
63
64
65
    sinusoid_inp = (
        torch.einsum("i , j -> i j", torch.arange(seq_len, dtype=torch.float), inv_freq).to(x.device).float()
    )
Stella Biderman's avatar
Stella Biderman committed
66
67
68
69
70
71
    return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)


def rotate_every_two(x):
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
72
    x = torch.stack((-x2, x1), dim=-1)
Stella Biderman's avatar
Stella Biderman committed
73
74
75
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


76
77
78
79
80
81
82
83
84
85
86
def duplicate_interleave(m):
    """
    A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy.
    """
    dim0 = m.shape[0]
    m = m.view(-1, 1)  # flatten the matrix
    m = m.repeat(1, 2)  # repeat all elements into the 2nd dimension
    m = m.view(dim0, -1)  # reshape into a matrix, interleaving the copy
    return m


Stella Biderman's avatar
Stella Biderman committed
87
def apply_rotary_pos_emb(x, sincos, offset=0):
88
    sin, cos = map(lambda t: duplicate_interleave(t)[None, offset : x.shape[1] + offset, None, :], sincos)
Stella Biderman's avatar
Stella Biderman committed
89
90
91
92
93
94
95
96
97
98
99
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


class GPTJAttention(nn.Module):
    def __init__(self, config):
        super().__init__()

        max_positions = config.max_position_embeddings
        self.register_buffer(
            "bias",
100
            torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
Stella Biderman's avatar
Stella Biderman committed
101
102
103
104
105
106
107
108
109
110
111
112
113
                1, 1, max_positions, max_positions
            ),
        )
        self.register_buffer("masked_bias", torch.tensor(-1e9))

        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)

        self.embed_dim = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_attention_heads
        if self.head_dim * self.num_attention_heads != self.embed_dim:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
                f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
                f" `num_attention_heads`: {self.num_attention_heads})."
Stella Biderman's avatar
Stella Biderman committed
116
117
118
119
120
121
122
123
124
125
126
127
128
            )
        self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
        self.rotary_dim = None
        if config.rotary_dim is not None:
            self.rotary_dim = config.rotary_dim

    def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
        """
129
        Splits hidden dim into attn_head_size and num_attention_heads
Stella Biderman's avatar
Stella Biderman committed
130
131
        """
        new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
132
        tensor = tensor.view(new_shape)
Stella Biderman's avatar
Stella Biderman committed
133
134
135
136
137
138
139
140
141
142
143
        if rotary:
            return tensor
        if len(tensor.shape) == 5:
            return tensor.permute(0, 1, 3, 2, 4)  # (batch, blocks, head, block_length, head_features)
        elif len(tensor.shape) == 4:
            return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")

    def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
        """
144
        Merges attn_head_size dim and num_attn_heads dim into hidden dim
Stella Biderman's avatar
Stella Biderman committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        """
        if len(tensor.shape) == 5:
            tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
        elif len(tensor.shape) == 4:
            tensor = tensor.permute(0, 2, 1, 3).contiguous()
        else:
            raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
        new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
        return tensor.view(new_shape)

    def _attn(
        self,
        query,
        key,
        value,
        attention_mask=None,
        head_mask=None,
    ):

        # compute causal mask from causal mask buffer
        query_length, key_length = query.size(-2), key.size(-2)
166
        causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
Stella Biderman's avatar
Stella Biderman committed
167
168
169
170
171
172

        # Keep the attention weights computation in fp32 to avoid overflow issues
        query = query.to(torch.float32)
        key = key.to(torch.float32)

        attn_weights = torch.matmul(query, key.transpose(-1, -2))
Yih-Dar's avatar
Yih-Dar committed
173
174
175
176
177
178

        mask_value = torch.finfo(attn_weights.dtype).min
        # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
        # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
        mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
        attn_weights = torch.where(causal_mask, attn_weights, mask_value)
Stella Biderman's avatar
Stella Biderman committed
179
180
181
182
183
184
185

        attn_weights = attn_weights / self.scale_attn

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

186
        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
Stella Biderman's avatar
Stella Biderman committed
187
188
189
190
191
192
193
194
195
196
197
198
199
        attn_weights = attn_weights.to(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def forward(
        self,
200
201
202
203
204
205
206
207
208
209
        hidden_states: Optional[torch.FloatTensor],
        attention_mask: Optional[torch.FloatTensor] = None,
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[
        Tuple[torch.Tensor, Tuple[torch.Tensor]],
        Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
    ]:
Stella Biderman's avatar
Stella Biderman committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

        query = self.q_proj(hidden_states)
        key = self.k_proj(hidden_states)
        value = self.v_proj(hidden_states)

        query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
        key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
        value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)

        seq_len = key.shape[1]
        offset = 0

        if layer_past is not None:
            offset = layer_past[0].shape[-2]
            seq_len += offset

        if self.rotary_dim is not None:
            k_rot = key[:, :, :, : self.rotary_dim]
            k_pass = key[:, :, :, self.rotary_dim :]

            q_rot = query[:, :, :, : self.rotary_dim]
            q_pass = query[:, :, :, self.rotary_dim :]

            sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
            k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
            q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)

            key = torch.cat([k_rot, k_pass], dim=-1)
            query = torch.cat([q_rot, q_pass], dim=-1)
        else:
            sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
            key = apply_rotary_pos_emb(key, sincos, offset=offset)
            query = apply_rotary_pos_emb(query, sincos, offset=offset)

        key = key.permute(0, 2, 1, 3)
        query = query.permute(0, 2, 1, 3)

        if layer_past is not None:
            past_key = layer_past[0]
            past_value = layer_past[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        # compute self-attention: V x Softmax(QK^T)
        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)


class GPTJMLP(nn.Module):
    def __init__(self, intermediate_size, config):  # in MLP: intermediate_size= 4 * embed_dim
        super().__init__()
        embed_dim = config.n_embd

        self.fc_in = nn.Linear(embed_dim, intermediate_size)
        self.fc_out = nn.Linear(intermediate_size, embed_dim)

        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

283
    def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
Stella Biderman's avatar
Stella Biderman committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        hidden_states = self.fc_in(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc_out(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class GPTJBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
        self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.attn = GPTJAttention(config)
        self.mlp = GPTJMLP(inner_dim, config)

    def forward(
        self,
301
302
303
304
305
306
307
        hidden_states: Optional[torch.FloatTensor],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
Stella Biderman's avatar
Stella Biderman committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            layer_past=layer_past,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]  # output_attn: a, present, (attentions)
        outputs = attn_outputs[1:]

        feed_forward_hidden_states = self.mlp(hidden_states)
        hidden_states = attn_output + feed_forward_hidden_states + residual

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs  # hidden_states, present, (attentions)


class GPTJPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GPTJConfig
    base_model_prefix = "transformer"
    is_parallelizable = True
341
    supports_gradient_checkpointing = True
342
    _no_split_modules = ["GPTJBlock"]
Stella Biderman's avatar
Stella Biderman committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

363
364
365
366
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, GPTJModel):
            module.gradient_checkpointing = value

Stella Biderman's avatar
Stella Biderman committed
367
368

GPTJ_START_DOCSTRING = r"""
369
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
Stella Biderman's avatar
Stella Biderman committed
370
371
372
373
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
374
        config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Stella Biderman's avatar
Stella Biderman committed
375
            Initializing with a config file does not load the weights associated with the model, only the
Sylvain Gugger's avatar
Sylvain Gugger committed
376
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Stella Biderman's avatar
Stella Biderman committed
377
378
379
380
"""

GPTJ_INPUTS_DOCSTRING = r"""
    Args:
381
        input_ids (`torch.LongTensor` of shape `({0})`):
Stella Biderman's avatar
Stella Biderman committed
382
383
            Indices of input sequence tokens in the vocabulary.

Sylvain Gugger's avatar
Sylvain Gugger committed
384
385
            Indices can be obtained using [`GPTJTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.
Stella Biderman's avatar
Stella Biderman committed
386

387
388
389
            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
390
391
392
393

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

394
395
            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
396
397
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:
Stella Biderman's avatar
Stella Biderman committed
398

399
400
            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.
Stella Biderman's avatar
Stella Biderman committed
401

402
403
            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.
Stella Biderman's avatar
Stella Biderman committed
406

407
408
409
            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
Stella Biderman's avatar
Stella Biderman committed
410
411
412
413

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

414
        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
415
416
417
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
            model's internal embedding lookup matrix.
418
419
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
Stella Biderman's avatar
Stella Biderman committed
420
            tensors for more detail.
421
422
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
Stella Biderman's avatar
Stella Biderman committed
423
            more detail.
424
        return_dict (`bool`, *optional*):
425
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Stella Biderman's avatar
Stella Biderman committed
426
427
428
429
430
431
432
433
"""

PARALLELIZE_DOCSTRING = r"""
    This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
    attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
    across all devices.

    Args:
434
        device_map (`Dict[int, list]`, optional, defaults to None):
Stella Biderman's avatar
Stella Biderman committed
435
436
437
438
439
440
441
            A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
            automatically mapped to the first device (for esoteric reasons). That means that the first device should
            have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
            following number of attention modules:

                - gpt-j-6B: 28

442
443
444
445
    Example:

    ```python
    # Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
446
447
448
449
450
451
452
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
453
454
    model.parallelize(device_map)
    ```
Stella Biderman's avatar
Stella Biderman committed
455
456
457
458
459
"""

DEPARALLELIZE_DOCSTRING = r"""
    Moves the model to CPU from a model parallel state.

460
461
462
463
    Example:

    ```python
    # On a 4 GPU machine with gpt-j-6B:
Sylvain Gugger's avatar
Sylvain Gugger committed
464
465
466
467
468
469
470
471
472
    model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
    device_map = {
        0: [0, 1, 2, 3, 4, 5, 6],
        1: [7, 8, 9, 10, 11, 12, 13],
        2: [14, 15, 16, 17, 18, 19, 20],
        3: [21, 22, 23, 24, 25, 26, 27],
    }
    model.parallelize(device_map)  # Splits the model across several devices
    model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
473
    ```
Stella Biderman's avatar
Stella Biderman committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
"""


@add_start_docstrings(
    "The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
    GPTJ_START_DOCSTRING,
)
class GPTJModel(GPTJPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.n_embd
        self.vocab_size = config.vocab_size
        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
495
        self.gradient_checkpointing = False
Stella Biderman's avatar
Stella Biderman committed
496

497
498
499
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
        # Check validity of device_map
        self.device_map = (
            get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
        )
        assert_device_map(self.device_map, len(self.h))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
        self.last_device = "cuda:" + str(max(self.device_map.keys()))
        self.wte = self.wte.to(self.first_device)
        # Load onto devices
        for k, v in self.device_map.items():
            for block in v:
                cuda_device = "cuda:" + str(k)
                self.h[block] = self.h[block].to(cuda_device)
        # ln_f to last
        self.ln_f = self.ln_f.to(self.last_device)

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        self.wte = self.wte.to("cpu")
        for index in range(len(self.h)):
            self.h[index] = self.h[index].to("cpu")
        self.ln_f = self.ln_f.to("cpu")
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
539
        processor_class=_TOKENIZER_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
540
541
542
543
544
545
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
546
547
548
549
550
551
552
553
554
555
556
557
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if position_ids is not None:
            position_ids = position_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)

        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Attention mask.
        if attention_mask is not None:
597
598
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
Stella Biderman's avatar
Stella Biderman committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Yih-Dar's avatar
Yih-Dar committed
613
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
Stella Biderman's avatar
Stella Biderman committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_attention_heads x N x N
        # head_mask has shape n_layer x batch x num_attention_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):

            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

653
            if self.gradient_checkpointing and self.training:
Stella Biderman's avatar
Stella Biderman committed
654
655
656

                if use_cache:
                    logger.warning(
657
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
Stella Biderman's avatar
Stella Biderman committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

700
        hidden_states = hidden_states.view(output_shape)
Stella Biderman's avatar
Stella Biderman committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


@add_start_docstrings(
    """
Suraj Patil's avatar
Suraj Patil committed
718
    The GPT-J Model transformer with a language modeling head on top.
Stella Biderman's avatar
Stella Biderman committed
719
720
721
722
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForCausalLM(GPTJPreTrainedModel):
723
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
Stella Biderman's avatar
Stella Biderman committed
724
725
726
727
728
729
730
731
732
733

    def __init__(self, config):
        super().__init__(config)
        self.transformer = GPTJModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

734
735
736
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    @add_start_docstrings(PARALLELIZE_DOCSTRING)
    def parallelize(self, device_map=None):
        self.device_map = (
            get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
    def deparallelize(self):
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
758
        return self.lm_head
Stella Biderman's avatar
Stella Biderman committed
759
760

    def set_output_embeddings(self, new_embeddings):
761
        self.lm_head = new_embeddings
Stella Biderman's avatar
Stella Biderman committed
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
793
        processor_class=_TOKENIZER_FOR_DOC,
Stella Biderman's avatar
Stella Biderman committed
794
795
796
797
798
799
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
800
801
802
803
804
805
806
807
808
809
810
811
812
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
813
        r"""
814
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Stella Biderman's avatar
Stella Biderman committed
815
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
Sylvain Gugger's avatar
Sylvain Gugger committed
816
817
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
Stella Biderman's avatar
Stella Biderman committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        # make sure sampling in fp16 works correctly and
        # compute loss in fp32 to match with mesh-tf version
        # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
        lm_logits = self.lm_head(hidden_states).to(torch.float32)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

            loss = loss.to(hidden_states.dtype)

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    @staticmethod
    def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
872
873
874
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
Stella Biderman's avatar
Stella Biderman committed
875
876
877
878
879
880
881
882
883
884
885
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past
        )


@add_start_docstrings(
    """
    The GPT-J Model transformer with a sequence classification head on top (linear layer).

Sylvain Gugger's avatar
Sylvain Gugger committed
886
887
    [`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT, GPT-2, GPT-Neo) do.
Stella Biderman's avatar
Stella Biderman committed
888
889

    Since it does classification on the last token, it requires to know the position of the last token. If a
Sylvain Gugger's avatar
Sylvain Gugger committed
890
891
892
893
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
Stella Biderman's avatar
Stella Biderman committed
894
895
896
897
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForSequenceClassification(GPTJPreTrainedModel):
898
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
Stella Biderman's avatar
Stella Biderman committed
899
900
901
902
903

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
904
        self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
Stella Biderman's avatar
Stella Biderman committed
905
906
907
908
909

        # Model parallel
        self.model_parallel = False
        self.device_map = None

910
911
912
        # Initialize weights and apply final processing
        self.post_init()

Stella Biderman's avatar
Stella Biderman committed
913
914
    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
915
        processor_class=_TOKENIZER_FOR_DOC,
916
        checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
Stella Biderman's avatar
Stella Biderman committed
917
918
        output_type=SequenceClassifierOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
919
920
        expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
        expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
Stella Biderman's avatar
Stella Biderman committed
921
922
923
    )
    def forward(
        self,
924
925
926
927
928
929
930
931
932
933
934
935
936
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
Stella Biderman's avatar
Stella Biderman committed
937
        r"""
938
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Sylvain Gugger's avatar
Sylvain Gugger committed
939
940
941
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Stella Biderman's avatar
Stella Biderman committed
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

966
967
        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
Stella Biderman's avatar
Stella Biderman committed
968
969
970
971
972
973
974
975
976
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
            else:
                sequence_lengths = -1
                logger.warning(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
Sylvain Gugger's avatar
Sylvain Gugger committed
977
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
Stella Biderman's avatar
Stella Biderman committed
978
979
                )

980
        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
Stella Biderman's avatar
Stella Biderman committed
981
982
983

        loss = None
        if labels is not None:
984
985
986
987
988
989
990
991
992
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
Stella Biderman's avatar
Stella Biderman committed
993
                loss_fct = MSELoss()
994
995
996
997
998
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
Stella Biderman's avatar
Stella Biderman committed
999
1000
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1001
1002
1003
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
Stella Biderman's avatar
Stella Biderman committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024


@add_start_docstrings(
    """
    The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
    SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    GPTJ_START_DOCSTRING,
)
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
1025
    _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.transformer = GPTJModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        processor_class=_TOKENIZER_FOR_DOC,
1043
        checkpoint=_CHECKPOINT_FOR_QA,
1044
1045
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
1046
1047
        expected_output=_QA_EXPECTED_OUTPUT,
        expected_loss=_QA_EXPECTED_LOSS,
1048
1049
1050
    )
    def forward(
        self,
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1063
        r"""
1064
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1065
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1066
1067
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1068
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1069
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
1070
1071
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )