run_squad.py 33.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19


import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import glob
21
22
23
import logging
import os
import random
24
import timeit
Aymeric Augustin's avatar
Aymeric Augustin committed
25

26
27
import numpy as np
import torch
28
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
29
from torch.utils.data.distributed import DistributedSampler
30
from tqdm import tqdm, trange
31

32
from transformers import (
33
    MODEL_FOR_QUESTION_ANSWERING_MAPPING,
34
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
    AdamW,
36
37
38
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
39
40
    get_linear_schedule_with_warmup,
    squad_convert_examples_to_features,
41
)
Aymeric Augustin's avatar
Aymeric Augustin committed
42
43
44
45
46
47
48
49
50
51
from transformers.data.metrics.squad_metrics import (
    compute_predictions_log_probs,
    compute_predictions_logits,
    squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor


try:
    from torch.utils.tensorboard import SummaryWriter
52
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
53
    from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
54

55
56
57

logger = logging.getLogger(__name__)

58
59
MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
thomwolf's avatar
thomwolf committed
60

61

thomwolf's avatar
thomwolf committed
62
63
64
65
66
67
68
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

69

70
71
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
72

73

74
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
75
76
77
78
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

79
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
80
81
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
82
83

    if args.max_steps > 0:
84
        t_total = args.max_steps
85
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
86
    else:
87
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
88

89
    # Prepare optimizer and schedule (linear warmup and decay)
90
    no_decay = ["bias", "LayerNorm.weight"]
thomwolf's avatar
thomwolf committed
91
    optimizer_grouped_parameters = [
92
93
94
95
96
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
LysandreJik's avatar
Cleanup  
LysandreJik committed
97
    ]
98
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
99
    scheduler = get_linear_schedule_with_warmup(
100
101
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
102
103

    # Check if saved optimizer or scheduler states exist
104
105
106
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
107
        # Load in optimizer and scheduler states
108
109
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
LysandreJik's avatar
Cleanup  
LysandreJik committed
110

thomwolf's avatar
thomwolf committed
111
112
113
114
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
115
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
116

117
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
118

119
120
121
122
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
123
124
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
125
126
127
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
thomwolf's avatar
thomwolf committed
128

thomwolf's avatar
thomwolf committed
129
130
131
132
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
133
134
135
136
137
138
139
140
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
141
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
142

Lysandre's avatar
Lysandre committed
143
    global_step = 1
144
145
146
147
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
148
149
150
151
152
153
154
155
156
157
158
159
160
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
161

thomwolf's avatar
thomwolf committed
162
    tr_loss, logging_loss = 0.0, 0.0
163
    model.zero_grad()
164
165
166
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
167
    # Added here for reproductibility
168
169
    set_seed(args)

170
    for _ in train_iterator:
171
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
172
        for step, batch in enumerate(epoch_iterator):
173
174
175
176
177
178

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

179
            model.train()
thomwolf's avatar
thomwolf committed
180
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
181
182

            inputs = {
183
184
                "input_ids": batch[0],
                "attention_mask": batch[1],
185
                "token_type_ids": batch[2],
186
187
                "start_positions": batch[3],
                "end_positions": batch[4],
LysandreJik's avatar
Cleanup  
LysandreJik committed
188
189
            }

190
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]:
191
192
                del inputs["token_type_ids"]

193
194
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
195
                if args.version_2_with_negative:
196
                    inputs.update({"is_impossible": batch[7]})
197
198
199
200
201
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )

Peiqin Lin's avatar
typos  
Peiqin Lin committed
202
            outputs = model(**inputs)
203
204
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
205

206
            if args.n_gpu > 1:
207
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
208
209
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
210

211
212
213
214
215
216
217
218
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
219
                if args.fp16:
220
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
221
                else:
222
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
223

224
                optimizer.step()
225
                scheduler.step()  # Update learning rate schedule
226
227
228
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
229
                # Log metrics
230
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
231
232
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
233
234
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
235
236
237
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
238
239
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
240
                # Save model checkpoint
241
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
242
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
243
                    # Take care of distributed/parallel training
244
                    model_to_save = model.module if hasattr(model, "module") else model
245
                    model_to_save.save_pretrained(output_dir)
246
247
                    tokenizer.save_pretrained(output_dir)

248
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
249
250
                    logger.info("Saving model checkpoint to %s", output_dir)

251
252
253
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
254

255
256
257
258
259
260
261
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
262
263
264
    if args.local_rank in [-1, 0]:
        tb_writer.close()

265
266
267
268
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
269
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
270
271
272
273
274

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
275

276
    # Note that DistributedSampler samples randomly
277
    eval_sampler = SequentialSampler(dataset)
278
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
279

ronakice's avatar
ronakice committed
280
    # multi-gpu evaluate
281
    if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
ronakice's avatar
ronakice committed
282
283
        model = torch.nn.DataParallel(model)

284
285
286
287
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
288

289
    all_results = []
290
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
291

292
293
294
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
295

296
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
297
            inputs = {
298
299
                "input_ids": batch[0],
                "attention_mask": batch[1],
300
                "token_type_ids": batch[2],
LysandreJik's avatar
LysandreJik committed
301
            }
302

303
            if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]:
304
305
                del inputs["token_type_ids"]

306
            feature_indices = batch[3]
307

LysandreJik's avatar
Cleanup  
LysandreJik committed
308
            # XLNet and XLM use more arguments for their predictions
309
310
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
311
312
313
314
315
                # for lang_id-sensitive xlm models
                if hasattr(model, "config") and hasattr(model.config, "lang2id"):
                    inputs.update(
                        {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)}
                    )
316
317
            outputs = model(**inputs)

318
319
        for i, feature_index in enumerate(feature_indices):
            eval_feature = features[feature_index.item()]
320
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
321

LysandreJik's avatar
LysandreJik committed
322
323
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
324
325
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
326
327
328
329
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
330
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
331
332
333
                cls_logits = output[4]

                result = SquadResult(
334
335
336
                    unique_id,
                    start_logits,
                    end_logits,
337
338
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
339
                    cls_logits=cls_logits,
LysandreJik's avatar
LysandreJik committed
340
341
342
343
                )

            else:
                start_logits, end_logits = output
344
                result = SquadResult(unique_id, start_logits, end_logits)
LysandreJik's avatar
LysandreJik committed
345

346
            all_results.append(result)
347

348
    evalTime = timeit.default_timer() - start_time
349
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
350

thomwolf's avatar
thomwolf committed
351
    # Compute predictions
352
353
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
354

355
    if args.version_2_with_negative:
356
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
357
358
    else:
        output_null_log_odds_file = None
359

LysandreJik's avatar
Cleanup  
LysandreJik committed
360
    # XLNet and XLM use a more complex post-processing procedure
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    if args.model_type in ["xlnet", "xlm"]:
        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

        predictions = compute_predictions_log_probs(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            start_n_top,
            end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
380
    else:
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        predictions = compute_predictions_logits(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
            tokenizer,
        )
396

LysandreJik's avatar
Cleanup  
LysandreJik committed
397
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
398
    results = squad_evaluate(examples, predictions)
399
400
    return results

401

402
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
403
    if args.local_rank not in [-1, 0] and not evaluate:
404
405
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
406

407
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
408
    input_dir = args.data_dir if args.data_dir else "."
409
410
411
412
413
414
415
    cached_features_file = os.path.join(
        input_dir,
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
LysandreJik's avatar
Cleanup  
LysandreJik committed
416
417
418
    )

    # Init features and dataset from cache if it exists
419
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
420
        logger.info("Loading features from cached file %s", cached_features_file)
421
        features_and_dataset = torch.load(cached_features_file)
422
423
424
425
426
        features, dataset, examples = (
            features_and_dataset["features"],
            features_and_dataset["dataset"],
            features_and_dataset["examples"],
        )
thomwolf's avatar
thomwolf committed
427
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
428
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
429

430
        if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)):
LysandreJik's avatar
Cleanup  
LysandreJik committed
431
432
433
            try:
                import tensorflow_datasets as tfds
            except ImportError:
434
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
435
436

            if args.version_2_with_negative:
437
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
438
439

            tfds_examples = tfds.load("squad")
440
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
441
442
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
443
444
445
446
            if evaluate:
                examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
            else:
                examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
LysandreJik's avatar
LysandreJik committed
447

448
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
449
450
451
452
453
454
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
455
            return_dataset="pt",
erenup's avatar
erenup committed
456
            threads=args.threads,
Lysandre's avatar
Lysandre committed
457
458
        )

thomwolf's avatar
thomwolf committed
459
        if args.local_rank in [-1, 0]:
460
            logger.info("Saving features into cached file %s", cached_features_file)
461
            torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
thomwolf's avatar
thomwolf committed
462

VictorSanh's avatar
VictorSanh committed
463
    if args.local_rank == 0 and not evaluate:
464
465
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
466

467
468
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
469
470
    return dataset

471
472
473
474

def main():
    parser = argparse.ArgumentParser()

475
    # Required parameters
476
477
478
479
480
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
481
        help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
482
483
484
485
486
487
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
488
        help="Path to pretrained model or model identifier from huggingface.co/models",
489
490
491
492
493
494
495
496
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
497

498
    # Other parameters
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help="The input data dir. Should contain the .json files for the task."
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        help="The input training file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="The input evaluation file. If a data dir is specified, will look for the file there"
        + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
571
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )
620
621
622
623
624
625
    parser.add_argument(
        "--lang_id",
        default=0,
        type=int,
        help="language id of input for language-specific xlm models (see tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)",
    )
626

627
628
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")

    parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
660
661
    args = parser.parse_args()

662
663
664
665
666
667
668
    if args.doc_stride >= args.max_seq_length - args.max_query_length:
        logger.warning(
            "WARNING - You've set a doc stride which may be superior to the document length in some "
            "examples. This could result in errors when building features from the examples. Please reduce the doc "
            "stride or increase the maximum length to ensure the features are correctly built."
        )

669
670
671
672
673
674
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
675
        raise ValueError(
676
677
678
679
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
thomwolf's avatar
thomwolf committed
680

681
    # Setup distant debugging if needed
682
683
684
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
685

686
        print("Waiting for debugger attach")
687
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
688
689
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
690
    # Setup CUDA, GPU & distributed training
691
    if args.local_rank == -1 or args.no_cuda:
692
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
693
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
694
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
695
696
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
697
        torch.distributed.init_process_group(backend="nccl")
thomwolf's avatar
thomwolf committed
698
699
        args.n_gpu = 1
    args.device = device
700

thomwolf's avatar
thomwolf committed
701
    # Setup logging
702
703
704
705
706
707
708
709
710
711
712
713
714
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
715

716
717
    # Set seed
    set_seed(args)
718

thomwolf's avatar
thomwolf committed
719
    # Load pretrained model and tokenizer
720
    if args.local_rank not in [-1, 0]:
721
722
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
723

724
    args.model_type = args.model_type.lower()
725
    config = AutoConfig.from_pretrained(
726
727
728
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
729
    tokenizer = AutoTokenizer.from_pretrained(
730
731
732
733
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
734
    model = AutoModelForQuestionAnswering.from_pretrained(
735
736
737
738
739
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
740
741

    if args.local_rank == 0:
742
743
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
744

thomwolf's avatar
thomwolf committed
745
    model.to(args.device)
746

747
748
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
749
750
751
752
753
754
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
755
756

            apex.amp.register_half_function(torch, "einsum")
Simon Layton's avatar
Simon Layton committed
757
        except ImportError:
758
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
759

thomwolf's avatar
thomwolf committed
760
    # Training
761
    if args.do_train:
762
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
763
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
764
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
765

thomwolf's avatar
thomwolf committed
766
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
767
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
768
769
770
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
771
        # Take care of distributed/parallel training
772
        model_to_save = model.module if hasattr(model, "module") else model
773
774
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
775
776

        # Good practice: save your training arguments together with the trained model
777
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
778

779
        # Load a trained model and vocabulary that you have fine-tuned
780
781
        model = AutoModelForQuestionAnswering.from_pretrained(args.output_dir)  # , force_download=True)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
782
783
        model.to(args.device)

thomwolf's avatar
thomwolf committed
784
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
785
786
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
787
788
789
790
        if args.do_train:
            logger.info("Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
791
792
793
794
                checkpoints = list(
                    os.path.dirname(c)
                    for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
                )
795

796
797
798
        else:
            logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path)
            checkpoints = [args.model_name_or_path]
thomwolf's avatar
thomwolf committed
799

800
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
801

802
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
803
            # Reload the model
804
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
805
            model = AutoModelForQuestionAnswering.from_pretrained(checkpoint)  # , force_download=True)
806
            model.to(args.device)
thomwolf's avatar
thomwolf committed
807
808

            # Evaluate
809
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
810

811
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
812
            results.update(result)
thomwolf's avatar
thomwolf committed
813

814
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
815

816
    return results
817
818
819
820


if __name__ == "__main__":
    main()