test_processor_speech_to_text.py 5.81 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile

from transformers import Speech2TextFeatureExtractor, Speech2TextProcessor, Speech2TextTokenizer
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio

from .test_feature_extraction_speech_to_text import floats_list


SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


@require_torch
@require_torchaudio
@require_sentencepiece
class Speech2TextProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        vocab = ["<s>", "<pad>", "</s>", "<unk>", "鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        save_dir = Path(self.tmpdirname)
        save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
        if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
            copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])

        tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname)
        tokenizer.save_pretrained(self.tmpdirname)

        feature_extractor_map = {
            "feature_size": 24,
            "num_mel_bins": 24,
            "padding_value": 0.0,
            "sampling_rate": 16000,
            "return_attention_mask": False,
            "do_normalize": True,
        }
        save_json(feature_extractor_map, save_dir / FEATURE_EXTRACTOR_NAME)

    def get_tokenizer(self, **kwargs):
        return Speech2TextTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_feature_extractor(self, **kwargs):
        return Speech2TextFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = Speech2TextProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)

    def test_save_load_pretrained_additional_features(self):
        processor = Speech2TextProcessor(
            tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()
        )
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)

        processor = Speech2TextProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        raw_speech = floats_list((3, 1000))

        input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
        input_processor = processor(raw_speech, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "This is a test string"

        with processor.as_target_processor():
            encoded_processor = processor(input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)