test_benchmark_tf.py 8.24 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
import os
import tempfile
import unittest
from pathlib import Path

from transformers import AutoConfig, is_tf_available
7
from transformers.testing_utils import require_tf
Patrick von Platen's avatar
Patrick von Platen committed
8
9
10
11


if is_tf_available():
    import tensorflow as tf
12

13
    from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
Patrick von Platen's avatar
Patrick von Platen committed
14
15
16
17
18
19
20
21
22
23
24
25


@require_tf
class TFBenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
26
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
27
28
            models=[MODEL_ID],
            training=False,
29
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
30
31
32
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
33
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
34
        )
35
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

40
41
    def test_inference_no_configs_only_pretrain(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"
42
        benchmark_args = TensorFlowBenchmarkArguments(
43
44
            models=[MODEL_ID],
            training=False,
45
            inference=True,
46
47
            sequence_lengths=[8],
            batch_sizes=[1],
48
            multi_process=False,
49
50
            only_pretrain_model=True,
        )
51
        benchmark = TensorFlowBenchmark(benchmark_args)
52
53
54
55
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

Patrick von Platen's avatar
Patrick von Platen committed
56
57
    def test_inference_no_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
58
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
59
60
            models=[MODEL_ID],
            training=False,
61
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
62
63
            sequence_lengths=[8],
            batch_sizes=[1],
64
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
65
        )
66
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
73
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
74
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
75
76
            models=[MODEL_ID],
            training=False,
77
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
81
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
82
        )
83
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
87
88
89
90
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
91
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
92
93
            models=[MODEL_ID],
            training=False,
94
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
95
96
            sequence_lengths=[8],
            batch_sizes=[1],
97
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
98
        )
99
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
103
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

104
105
106
107
108
    def test_train_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = TensorFlowBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
109
            inference=False,
110
111
            sequence_lengths=[8],
            batch_sizes=[1],
112
            multi_process=False,
113
114
115
116
117
118
119
120
121
122
123
124
        )
        benchmark = TensorFlowBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_train_with_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = TensorFlowBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
125
            inference=False,
126
127
            sequence_lengths=[8],
            batch_sizes=[1],
128
            multi_process=False,
129
130
131
132
133
134
        )
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "patrickvonplaten/t5-tiny-random"
        config = AutoConfig.from_pretrained(MODEL_ID)
138
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
139
140
            models=[MODEL_ID],
            training=False,
141
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
142
143
            sequence_lengths=[8],
            batch_sizes=[1],
144
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
145
        )
146
        benchmark = TensorFlowBenchmark(benchmark_args, configs=[config])
Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
150
151
152
153
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.")
    def test_inference_no_configs_xla(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
154
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
155
156
            models=[MODEL_ID],
            training=False,
157
            inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
158
159
160
            sequence_lengths=[8],
            batch_sizes=[1],
            use_xla=True,
161
            multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
162
        )
163
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
164
165
166
167
168
169
170
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
171
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
172
                models=[MODEL_ID],
173
                inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
177
178
179
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
180
                multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
181
            )
182
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
198
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
199
                models=[MODEL_ID],
200
                inference=True,
Patrick von Platen's avatar
Patrick von Platen committed
201
202
203
204
205
206
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
                eager_mode=True,
207
                multi_process=False,
Patrick von Platen's avatar
Patrick von Platen committed
208
            )
209
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
210
211
212
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())