test_onnx_v2.py 21.7 KB
Newer Older
1
import os
2
3
4
5
6
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch

lewtun's avatar
lewtun committed
7
8
import pytest

9
from parameterized import parameterized
10
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
11
12
13
from transformers.onnx import (
    EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
    OnnxConfig,
lewtun's avatar
lewtun committed
14
    OnnxConfigWithPast,
15
16
17
18
    ParameterFormat,
    export,
    validate_model_outputs,
)
19
20
21
22
23
from transformers.onnx.utils import (
    compute_effective_axis_dimension,
    compute_serialized_parameters_size,
    get_preprocessor,
)
24
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
25
26


27
if is_torch_available() or is_tf_available():
28
29
    from transformers.onnx.features import FeaturesManager

30
31
32
33
34
if is_torch_available():
    import torch

    from transformers.models.deberta import modeling_deberta

35
36
37
38
39
40
41

@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
    """
    Cover all the utilities involved to export ONNX models
    """

42
43
44
45
46
47
48
49
50
    @require_torch
    @patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
    def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
        """
        Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
        """
        self.assertRaises(AssertionError, export, None, None, None, None, None)
        mock_is_torch_onnx_dict_inputs_support_available.assert_called()

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    def test_compute_effective_axis_dimension(self):
        """
        When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
        We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
        (> 1 to avoid ONNX squeezing the axis).

        This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
        """

        # Dynamic axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)

        # Static axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)

        # Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)

        # Dynamic axis (sequence, token added by the tokenizer 3 (pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)

    def test_compute_parameters_serialized_size(self):
        """
        This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
        parameters for the specified parameter's dtype.
        """
        self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)

    def test_flatten_output_collection_property(self):
        """
        This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
        past_keys = Tuple[Tuple]

        ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
        """
        self.assertEqual(
89
            OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            {
                "past_key.0": 0,
                "past_key.1": 1,
                "past_key.2": 2,
            },
        )


class OnnxConfigTestCaseV2(TestCase):
    """
    Cover the test for models default.

    Default means no specific features is being enabled on the model.
    """

    @patch.multiple(OnnxConfig, __abstractmethods__=set())
    def test_use_external_data_format(self):
        """
        External data format is required only if the serialized size of the parameters if bigger than 2Gb
        """
        TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT

        # No parameters
        self.assertFalse(OnnxConfig.use_external_data_format(0))

        # Some parameters
        self.assertFalse(OnnxConfig.use_external_data_format(1))

        # Almost 2Gb parameters
        self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))

        # Exactly 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))

        # More than 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))


class OnnxConfigWithPastTestCaseV2(TestCase):
    """
    Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
    """

133
134
135
136
137
138
    SUPPORTED_WITH_PAST_CONFIGS = {}
    # SUPPORTED_WITH_PAST_CONFIGS = {
    #     ("BART", BartConfig),
    #     ("GPT2", GPT2Config),
    #     # ("T5", T5Config)
    # }
139
140
141
142
143
144
145
146
147

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_use_past(self):
        """
        Ensure the use_past variable is correctly being set
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                self.assertFalse(
148
149
                    OnnxConfigWithPast.from_model_config(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should not use_past",
150
151
152
                )

                self.assertTrue(
153
154
                    OnnxConfigWithPast.with_past(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should use_past",
155
156
157
158
159
160
161
162
163
164
                )

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_values_override(self):
        """
        Ensure the use_past variable correctly set the `use_cache` value in model's configuration
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                # without past
165
                onnx_config_default = OnnxConfigWithPast.from_model_config(config())
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertFalse(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )

                # with past
                onnx_config_default = OnnxConfigWithPast.with_past(config())
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertTrue(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )


181
182
183
PYTORCH_EXPORT_MODELS = {
    ("albert", "hf-internal-testing/tiny-albert"),
    ("bert", "bert-base-cased"),
184
    ("big-bird", "google/bigbird-roberta-base"),
185
    ("ibert", "kssteven/ibert-roberta-base"),
186
    ("camembert", "camembert-base"),
187
    ("clip", "openai/clip-vit-base-patch32"),
188
    ("convbert", "YituTech/conv-bert-base"),
mrbean's avatar
mrbean committed
189
    ("codegen", "Salesforce/codegen-350M-multi"),
190
191
    ("deberta", "microsoft/deberta-base"),
    ("deberta-v2", "microsoft/deberta-v2-xlarge"),
192
    ("convnext", "facebook/convnext-tiny-224"),
regisss's avatar
regisss committed
193
    ("detr", "facebook/detr-resnet-50"),
194
    ("distilbert", "distilbert-base-cased"),
195
    ("electra", "google/electra-base-generator"),
196
    ("imagegpt", "openai/imagegpt-small"),
regisss's avatar
regisss committed
197
    ("resnet", "microsoft/resnet-50"),
198
    ("roberta", "roberta-base"),
199
    ("roformer", "junnyu/roformer_chinese_base"),
200
    ("squeezebert", "squeezebert/squeezebert-uncased"),
201
    ("mobilebert", "google/mobilebert-uncased"),
202
    ("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
203
    ("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
204
    ("mobilevit", "apple/mobilevit-small"),
Ritik Nandwal's avatar
Ritik Nandwal committed
205
    ("xlm", "xlm-clm-ende-1024"),
206
207
    ("xlm-roberta", "xlm-roberta-base"),
    ("layoutlm", "microsoft/layoutlm-base-uncased"),
208
    ("layoutlmv3", "microsoft/layoutlmv3-base"),
209
    ("groupvit", "nvidia/groupvit-gcc-yfcc"),
gcheron's avatar
gcheron committed
210
    ("levit", "facebook/levit-128S"),
211
    ("owlvit", "google/owlvit-base-patch32"),
lewtun's avatar
lewtun committed
212
    ("vit", "google/vit-base-patch16-224"),
213
    ("deit", "facebook/deit-small-patch16-224"),
Jim Rohrer's avatar
Jim Rohrer committed
214
    ("beit", "microsoft/beit-base-patch16-224"),
215
    ("data2vec-text", "facebook/data2vec-text-base"),
216
    ("data2vec-vision", "facebook/data2vec-vision-base"),
217
218
    ("perceiver", "deepmind/language-perceiver", ("masked-lm", "sequence-classification")),
    ("perceiver", "deepmind/vision-perceiver-conv", ("image-classification",)),
219
    ("longformer", "allenai/longformer-base-4096"),
NielsRogge's avatar
NielsRogge committed
220
    ("yolos", "hustvl/yolos-tiny"),
221
    ("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
222
    ("swin", "microsoft/swin-tiny-patch4-window7-224"),
223
    ("whisper", "openai/whisper-tiny.en"),
224
225
}

226
227
228
229
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
    ("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
}

230
PYTORCH_EXPORT_WITH_PAST_MODELS = {
231
    ("bloom", "bigscience/bloom-560m"),
232
233
234
235
236
237
238
239
    ("gpt2", "gpt2"),
    ("gpt-neo", "EleutherAI/gpt-neo-125M"),
}

PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
    ("bart", "facebook/bart-base"),
    ("mbart", "sshleifer/tiny-mbart"),
    ("t5", "t5-small"),
240
    ("marian", "Helsinki-NLP/opus-mt-en-de"),
241
    ("mt5", "google/mt5-base"),
242
    ("m2m-100", "facebook/m2m100_418M"),
243
244
    ("blenderbot-small", "facebook/blenderbot_small-90M"),
    ("blenderbot", "facebook/blenderbot-400M-distill"),
245
    ("bigbird-pegasus", "google/bigbird-pegasus-large-arxiv"),
246
    ("longt5", "google/long-t5-local-base"),
247
248
249
    # Disable for now as it causes fatal error `Floating point exception (core dumped)` and the subsequential tests are
    # not run.
    # ("longt5", "google/long-t5-tglobal-base"),
250
251
}

252
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
253
254
255
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
    ("albert", "hf-internal-testing/tiny-albert"),
    ("bert", "bert-base-cased"),
256
    ("camembert", "camembert-base"),
257
258
259
260
    ("distilbert", "distilbert-base-cased"),
    ("roberta", "roberta-base"),
}

261
262
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
263

264
265
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
266

267
268
269

def _get_models_to_test(export_models_list):
    models_to_test = []
270
    if is_torch_available() or is_tf_available():
271
272
273
274
275
276
277
278
279
        for name, model, *features in export_models_list:
            if features:
                feature_config_mapping = {
                    feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
                }
            else:
                feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(name)

            for feature, onnx_config_class_constructor in feature_config_mapping.items():
280
281
282
283
284
                models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
        return sorted(models_to_test)
    else:
        # Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
        # decorators.
285
286
        # The reason for not returning an empty list is because parameterized.expand complains when it's empty.
        return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
287
288
289
290
291
292
293


class OnnxExportTestCaseV2(TestCase):
    """
    Integration tests ensuring supported models are correctly exported
    """

294
295
296
    def _onnx_export(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
    ):
297
298
        from transformers.onnx import export

299
        model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
lewtun's avatar
lewtun committed
300
        config = AutoConfig.from_pretrained(model_name)
301
        model = model_class.from_config(config)
Yih-Dar's avatar
Yih-Dar committed
302
303
304
305
306
307

        # Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
        # See: https://github.com/ultralytics/yolov5/pull/8378
        if model.__class__.__name__.startswith("Yolos") and device != "cpu":
            return

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        # ONNX inference fails with the following name, feature, framework parameterizations
        # See: https://github.com/huggingface/transformers/issues/19357
        if (name, feature, framework) in {
            ("deberta-v2", "question-answering", "pt"),
            ("deberta-v2", "multiple-choice", "pt"),
            ("roformer", "multiple-choice", "pt"),
            ("groupvit", "default", "pt"),
            ("perceiver", "masked-lm", "pt"),
            ("perceiver", "sequence-classification", "pt"),
            ("perceiver", "image-classification", "pt"),
            ("bert", "multiple-choice", "tf"),
            ("camembert", "multiple-choice", "tf"),
            ("roberta", "multiple-choice", "tf"),
        }:
            return

324
        onnx_config = onnx_config_class_constructor(model.config)
325

lewtun's avatar
lewtun committed
326
        if is_torch_available():
327
            from transformers.utils import torch_version
lewtun's avatar
lewtun committed
328
329
330

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
Sylvain Gugger's avatar
Sylvain Gugger committed
331
332
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
lewtun's avatar
lewtun committed
333
334
                )

335
336
337
338
339
        preprocessor = get_preprocessor(model_name)

        # Useful for causal lm models that do not use pad tokens.
        if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
            config.pad_token_id = preprocessor.eos_token_id
lewtun's avatar
lewtun committed
340

341
342
343
        with NamedTemporaryFile("w") as output:
            try:
                onnx_inputs, onnx_outputs = export(
344
                    preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
345
346
347
                )
                validate_model_outputs(
                    onnx_config,
lewtun's avatar
lewtun committed
348
                    preprocessor,
349
350
351
352
353
354
355
                    model,
                    Path(output.name),
                    onnx_outputs,
                    onnx_config.atol_for_validation,
                )
            except (RuntimeError, ValueError) as e:
                self.fail(f"{name}, {feature} -> {e}")
356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    def _onnx_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
    ):
        from transformers import AutoFeatureExtractor, AutoTokenizer
        from transformers.onnx import export

        model_class = FeaturesManager.get_model_class_for_feature(feature)
        config = AutoConfig.from_pretrained(model_name)
        model = model_class.from_config(config)

        onnx_config = onnx_config_class_constructor(model.config)

        if is_torch_available():
            from transformers.utils import torch_version

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
                )

        encoder_model = model.get_encoder()
        decoder_model = model.get_decoder()

        encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
        decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)

        preprocessor = AutoFeatureExtractor.from_pretrained(model_name)

        onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)

        with NamedTemporaryFile("w") as encoder_output:
            onnx_inputs, onnx_outputs = export(
                preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
            )
            validate_model_outputs(
                encoder_onnx_config,
                preprocessor,
                encoder_model,
                Path(encoder_output.name),
                onnx_outputs,
                encoder_onnx_config.atol_for_validation,
            )

        preprocessor = AutoTokenizer.from_pretrained(model_name)

        with NamedTemporaryFile("w") as decoder_output:
404
            _, onnx_outputs = export(
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
                preprocessor,
                decoder_model,
                decoder_onnx_config,
                onnx_config.default_onnx_opset,
                Path(decoder_output.name),
                device=device,
            )
            validate_model_outputs(
                decoder_onnx_config,
                preprocessor,
                decoder_model,
                Path(decoder_output.name),
                onnx_outputs,
                decoder_onnx_config.atol_for_validation,
            )

421
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
422
423
    @slow
    @require_torch
lewtun's avatar
lewtun committed
424
    @require_vision
425
    @require_rjieba
426
    def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
427
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
428

429
430
431
432
433
434
435
436
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models_on_cuda(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(
            test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
        )

459
460
461
462
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
463
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
464

465
466
467
468
469
470
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
471
472
473
474
475
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
    @slow
    @require_tf
lewtun's avatar
lewtun committed
476
    @require_vision
477
    def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
478
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
479

480
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
481
482
483
    @slow
    @require_tf
    def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
484
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
485

486
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
487
488
489
490
491
    @slow
    @require_tf
    def test_tensorflow_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
492
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529


class StableDropoutTestCase(TestCase):
    """Tests export of StableDropout module."""

    @require_torch
    @pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*")  # torch.onnx is spammy.
    def test_training(self):
        """Tests export of StableDropout in training mode."""
        devnull = open(os.devnull, "wb")
        # drop_prob must be > 0 for the test to be meaningful
        sd = modeling_deberta.StableDropout(0.1)
        # Avoid warnings in training mode
        do_constant_folding = False
        # Dropout is a no-op in inference mode
        training = torch.onnx.TrainingMode.PRESERVE
        input = (torch.randn(2, 2),)

        torch.onnx.export(
            sd,
            input,
            devnull,
            opset_version=12,  # Minimum supported
            do_constant_folding=do_constant_folding,
            training=training,
        )

        # Expected to fail with opset_version < 12
        with self.assertRaises(Exception):
            torch.onnx.export(
                sd,
                input,
                devnull,
                opset_version=11,
                do_constant_folding=do_constant_folding,
                training=training,
            )