README.md 4.49 KB
Newer Older
Savaş Yıldırım's avatar
Savaş Yıldırım committed
1
# Bert-base Turkish Sentiment Model
Savaş Yıldırım's avatar
Savaş Yıldırım committed
2
3
4
5
6
7
8
9

https://huggingface.co/savasy/bert-base-turkish-sentiment-cased

This model is used for Sentiment Analysis, which is based on BERTurk for Turkish Language https://huggingface.co/dbmdz/bert-base-turkish-cased


# Dataset

Savaş Yıldırım's avatar
Savaş Yıldırım committed
10
11
12
The dataset is taken from the studies [2] and [3] and merged.

* The study [2] gathered movie and product reviews. The products are book, DVD, electronics, and kitchen.
Savaş Yıldırım's avatar
Savaş Yıldırım committed
13
14
15
16
17
18
19
20
21
The movie dataset is taken from a cinema Web page (www.beyazperde.com) with
5331 positive and 5331 negative sentences. Reviews in the Web page are marked in
scale from 0 to 5 by the users who made the reviews. The study considered a review
sentiment positive if the rating is equal to or bigger than 4, and negative if it is less
or equal to 2. They also built Turkish product review dataset from an online retailer
Web page. They constructed benchmark dataset consisting of reviews regarding some
products (book, DVD, etc.). Likewise, reviews are marked in the range from 1 to 5,
and majority class of reviews are 5. Each category has 700 positive and 700 negative
reviews in which average rating of negative reviews is 2.27 and of positive reviews
Savaş Yıldırım's avatar
Savaş Yıldırım committed
22
is 4.5. This dataset is also used the study [1]
Savaş Yıldırım's avatar
Savaş Yıldırım committed
23

Savaş Yıldırım's avatar
Savaş Yıldırım committed
24
* The study[3] collected tweet dataset. They proposed a new approach for automatically classifying the sentiment of microblog messages. The proposed approach is based on utilizing robust feature representation and fusion. 
Savaş Yıldırım's avatar
Savaş Yıldırım committed
25

Savaş Yıldırım's avatar
Savaş Yıldırım committed
26
27
28
29
30
31
32
33
*Merged Dataset* 

| *size*   | *data* |
|--------|----|
|   8000 |dev.tsv|
|   8262 |test.tsv|
|  32000 |train.tsv|
|  *48290* |*total*|
Savaş Yıldırım's avatar
Savaş Yıldırım committed
34

Savaş Yıldırım's avatar
Savaş Yıldırım committed
35
36

The dataset is used by following papers
Savaş Yıldırım's avatar
Savaş Yıldırım committed
37
38
39
40
 
* 1 Yildirim, Savaş. (2020). Comparing Deep Neural Networks to Traditional Models for Sentiment Analysis in Turkish Language. 10.1007/978-981-15-1216-2_12. 
* 2 Demirtas, Erkin and Mykola Pechenizkiy. 2013. Cross-lingual polarity detection with machine translation. In Proceedings of the Second International Workshop on Issues of Sentiment
Discovery and Opinion Mining (WISDOM ’13)
Savaş Yıldırım's avatar
Savaş Yıldırım committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
* Hayran, A.,   Sert, M. (2017), "Sentiment Analysis on Microblog Data based on Word Embedding and Fusion Techniques", IEEE 25th Signal Processing and Communications Applications Conference (SIU 2017), Belek, Turkey

# Training

```
export GLUE_DIR="./sst-2-newall"
export TASK_NAME=SST-2
 

python3 run_glue.py \
  --model_type bert \
  --model_name_or_path dbmdz/bert-base-turkish-uncased\
  --task_name "SST-2" \
  --do_train \
  --do_eval \
  --data_dir "./sst-2-newall" \
  --max_seq_length 128 \
  --per_gpu_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
  --output_dir "./model"

```




# Results

> 05/10/2020 17:00:43 - INFO - transformers.trainer -   ***** Running Evaluation *****

> 05/10/2020 17:00:43 - INFO - transformers.trainer -     Num examples = 7999

> 05/10/2020 17:00:43 - INFO - transformers.trainer -     Batch size = 8

>Evaluation: 100% 1000/1000 [00:34<00:00, 29.04it/s]

>05/10/2020 17:01:17 - INFO - __main__ -   ***** Eval results sst-2 *****

>05/10/2020 17:01:17 - INFO - __main__ -     acc = 0.9539942492811602
Savaş Yıldırım's avatar
Savaş Yıldırım committed
81

Savaş Yıldırım's avatar
Savaş Yıldırım committed
82
83
84
85
>05/10/2020 17:01:17 - INFO - __main__ -     loss = 0.16348013816401363


Accuracy is about *%95.4*
Savaş Yıldırım's avatar
Savaş Yıldırım committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Code Usage

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)

p= sa("bu telefon modelleri çok kaliteli , her parçası çok özel bence")
print(p)
#[{'label': 'LABEL_1', 'score': 0.9871089}]
print (p[0]['label']=='LABEL_1')
#True


p= sa("Film çok kötü ve çok sahteydi")
print(p)
#[{'label': 'LABEL_0', 'score': 0.9975505}]
print (p[0]['label']=='LABEL_1')
#False
```
Savaş Yıldırım's avatar
Savaş Yıldırım committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

# Test your data

Suppose your file has lots of lines of comment and label (1 or 0) at the end  (tab seperated)

> comment1 ... \t label

> comment2 ... \t label
 
> ...



```
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline

f="/path/to/your/file/yourfile.tsv"
model = AutoModelForSequenceClassification.from_pretrained(folder)
tokenizer = AutoTokenizer.from_pretrained(folder)
sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)

i,crr=0,0
for line in open(f):
 lines=line.strip().split("\t")
 if len(lines)==2:
  i=i+1
  if i%100==0:
   print(i)
  pred= sa(lines[0])
  pred=pred[0]["label"].split("_")[1]
  if pred== lines[1]:
   crr=crr+1

print(crr, i, crr/i)
```