configuration_ctrl.py 4.68 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Salesforce CTRL configuration """


import logging

from .configuration_utils import PretrainedConfig

Aymeric Augustin's avatar
Aymeric Augustin committed
22

keskarnitish's avatar
keskarnitish committed
23
24
25
26
logger = logging.getLogger(__name__)

CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP = {"ctrl": "https://storage.googleapis.com/sf-ctrl/pytorch/ctrl-config.json"}

27

keskarnitish's avatar
keskarnitish committed
28
29
30
31
class CTRLConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `CTRLModel`.

    Args:
thomwolf's avatar
thomwolf committed
32
        vocab_size: Vocabulary size of `inputs_ids` in `CTRLModel` or a configuration json file.
keskarnitish's avatar
keskarnitish committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
        n_positions: Number of positional embeddings.
        n_ctx: Size of the causal mask (usually same as n_positions).
        dff: Size of the inner dimension of the FFN.
        n_embd: Dimensionality of the embeddings and hidden states.
        n_layer: Number of hidden layers in the Transformer encoder.
        n_head: Number of attention heads for each attention layer in
            the Transformer encoder.
        layer_norm_epsilon: epsilon to use in the layer norm layers
        resid_pdrop: The dropout probabilitiy for all fully connected
            layers in the embeddings, encoder, and pooler.
        attn_pdrop: The dropout ratio for the attention
            probabilities.
        embd_pdrop: The dropout ratio for the embeddings.
        initializer_range: The sttdev of the truncated_normal_initializer for
            initializing all weight matrices.
    """
49

keskarnitish's avatar
keskarnitish committed
50
51
52
53
    pretrained_config_archive_map = CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(
        self,
thomwolf's avatar
thomwolf committed
54
        vocab_size=246534,
thomwolf's avatar
thomwolf committed
55
56
        n_positions=256,
        n_ctx=256,
keskarnitish's avatar
keskarnitish committed
57
58
59
60
61
62
63
64
65
        n_embd=1280,
        dff=8192,
        n_layer=48,
        n_head=16,
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        layer_norm_epsilon=1e-6,
        initializer_range=0.02,
66
        summary_type="cls_index",
keskarnitish's avatar
keskarnitish committed
67
68
69
70
71
72
73
74
75
        summary_use_proj=True,
        summary_activation=None,
        summary_proj_to_labels=True,
        summary_first_dropout=0.1,
        **kwargs
    ):
        """Constructs CTRLConfig.

        Args:
thomwolf's avatar
thomwolf committed
76
            vocab_size: Vocabulary size of `inputs_ids` in `CTRLModel` or a configuration json file.
keskarnitish's avatar
keskarnitish committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
            dff: Size of the inner dimension of the FFN.
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            layer_norm_epsilon: epsilon to use in the layer norm layers
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
        """
        super(CTRLConfig, self).__init__(**kwargs)
thomwolf's avatar
thomwolf committed
94
        self.vocab_size = vocab_size
thomwolf's avatar
thomwolf committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        self.n_ctx = n_ctx
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.dff = dff
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range

        self.summary_type = summary_type
        self.summary_use_proj = summary_use_proj
        self.summary_activation = summary_activation
        self.summary_first_dropout = summary_first_dropout
        self.summary_proj_to_labels = summary_proj_to_labels
keskarnitish's avatar
keskarnitish committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    @property
    def max_position_embeddings(self):
        return self.n_positions

    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer