test_tokenization_transfo_xl.py 2.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals

import os
import unittest
from io import open

21
from transformers import is_torch_available
22

Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
25
26
from .tokenization_tests_commons import CommonTestCases
from .utils import require_torch


27
if is_torch_available():
28
    from transformers.tokenization_transfo_xl import TransfoXLTokenizer, VOCAB_FILES_NAMES
thomwolf's avatar
thomwolf committed
29

30
31

@require_torch
32
33
class TransfoXLTokenizationTest(CommonTestCases.CommonTokenizerTester):

thomwolf's avatar
thomwolf committed
34
    tokenizer_class = TransfoXLTokenizer if is_torch_available() else None
35
36
37

    def setUp(self):
        super(TransfoXLTokenizationTest, self).setUp()
38
39

        vocab_tokens = [
40
41
42
43
44
45
46
47
48
49
50
            "<unk>",
            "[CLS]",
            "[SEP]",
            "want",
            "unwanted",
            "wa",
            "un",
            "running",
            ",",
            "low",
            "l",
51
        ]
52
53
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
54
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
55

56
    def get_tokenizer(self, **kwargs):
57
        kwargs["lower_case"] = True
58
        return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **kwargs)
59

60
    def get_input_output_texts(self):
61
62
        input_text = "<unk> UNwanted , running"
        output_text = "<unk> unwanted, running"
63
        return input_text, output_text
64

65
66
    def test_full_tokenizer(self):
        tokenizer = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=True)
67

68
        tokens = tokenizer.tokenize("<unk> UNwanted , running")
69
        self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])
70

71
        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])
72

73
74
75
76
    def test_full_tokenizer_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=True)

        self.assertListEqual(
77
78
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["hello", "!", "how", "are", "you", "?"]
        )
79
80
81
82
83

    def test_full_tokenizer_no_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=False)

        self.assertListEqual(
84
85
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
        )
86
87


88
if __name__ == "__main__":
89
    unittest.main()