"...gpu/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "9ad0a69afa50b85d902402b827a93234e7d7ebb5"
test_modeling_ctrl.py 8.24 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14
from __future__ import absolute_import, division, print_function
keskarnitish's avatar
keskarnitish committed
15

Aymeric Augustin's avatar
Aymeric Augustin committed
16
import unittest
keskarnitish's avatar
keskarnitish committed
17
18
19

from transformers import is_torch_available

20
21
from .test_configuration_common import ConfigTester
from .test_modeling_common import CommonTestCases, ids_tensor
22
from .utils import CACHE_DIR, require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
23
24


Aymeric Augustin's avatar
Aymeric Augustin committed
25
26
27
28
if is_torch_available():
    from transformers import CTRLConfig, CTRLModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel


29
@require_torch
keskarnitish's avatar
keskarnitish committed
30
31
32
33
34
35
36
37
38
class CTRLModelTest(CommonTestCases.CommonModelTester):

    all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else ()
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    class CTRLModelTester(object):
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_input_mask=True,
            use_labels=True,
            use_mc_token_ids=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
keskarnitish's avatar
keskarnitish committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
            self.use_mc_token_ids = use_mc_token_ids
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            mc_token_ids = None
            if self.use_mc_token_ids:
                mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = CTRLConfig(
thomwolf's avatar
thomwolf committed
113
                vocab_size=self.vocab_size,
keskarnitish's avatar
keskarnitish committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

129
130
131
132
133
134
135
136
137
138
139
            return (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
keskarnitish's avatar
keskarnitish committed
140
141

        def check_loss_output(self, result):
142
            self.parent.assertListEqual(list(result["loss"].size()), [])
keskarnitish's avatar
keskarnitish committed
143
144
145

        def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = CTRLModel(config=config)
146
            model.to(torch_device)
keskarnitish's avatar
keskarnitish committed
147
148
149
150
            model.eval()

            model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
            model(input_ids, token_type_ids=token_type_ids)
thomwolf's avatar
thomwolf committed
151
            sequence_output, presents = model(input_ids)
keskarnitish's avatar
keskarnitish committed
152
153
154

            result = {
                "sequence_output": sequence_output,
thomwolf's avatar
thomwolf committed
155
                "presents": presents,
keskarnitish's avatar
keskarnitish committed
156
157
            }
            self.parent.assertListEqual(
158
159
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
160
            self.parent.assertEqual(len(result["presents"]), config.n_layer)
keskarnitish's avatar
keskarnitish committed
161
162
163

        def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = CTRLLMHeadModel(config)
164
            model.to(torch_device)
keskarnitish's avatar
keskarnitish committed
165
166
167
168
            model.eval()

            loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)

169
170
            result = {"loss": loss, "lm_logits": lm_logits}
            self.parent.assertListEqual(list(result["loss"].size()), [])
keskarnitish's avatar
keskarnitish committed
171
            self.parent.assertListEqual(
172
173
                list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
keskarnitish's avatar
keskarnitish committed
174
175
176
177

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()

178
179
180
181
182
183
184
185
186
187
188
189
190
            (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs

            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
keskarnitish's avatar
keskarnitish committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

            return config, inputs_dict

    def setUp(self):
        self.model_tester = CTRLModelTest.CTRLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

209
    @slow
keskarnitish's avatar
keskarnitish committed
210
211
    def test_model_from_pretrained(self):
        for model_name in list(CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
212
            model = CTRLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
keskarnitish's avatar
keskarnitish committed
213
214
215
216
217
            self.assertIsNotNone(model)


if __name__ == "__main__":
    unittest.main()