test_modeling_falcon.py 21.4 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Falcon model. """


import unittest

Joao Gante's avatar
Joao Gante committed
20
21
from parameterized import parameterized

22
23
24
25
26
27
28
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    FalconConfig,
    is_torch_available,
    set_seed,
)
29
from transformers.testing_utils import require_bitsandbytes, require_torch, slow, torch_device
Matt's avatar
Matt committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        FalconForCausalLM,
        FalconForQuestionAnswering,
        FalconForSequenceClassification,
        FalconForTokenClassification,
        FalconModel,
    )


class FalconModelTester:
    def __init__(
        self,
        parent,
        batch_size=3,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
61
        num_hidden_layers=2,
Matt's avatar
Matt committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return FalconConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            pad_token_id=1,
            new_decoder_architecture=True,
        )

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = FalconModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = FalconModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = FalconForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = FalconForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class FalconModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            FalconModel,
            FalconForCausalLM,
            FalconForSequenceClassification,
            FalconForTokenClassification,
            FalconForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (FalconForCausalLM,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "feature-extraction": FalconModel,
289
            "question-answering": FalconForQuestionAnswering,
Matt's avatar
Matt committed
290
291
292
293
294
295
296
297
298
299
300
            "text-classification": FalconForSequenceClassification,
            "text-generation": FalconForCausalLM,
            "token-classification": FalconForTokenClassification,
            "zero-shot": FalconForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_headmasking = False
    test_pruning = False

301
302
303
304
305
306
    # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

Matt's avatar
Matt committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def setUp(self):
        self.model_tester = FalconModelTester(self)
        self.config_tester = ConfigTester(self, config_class=FalconConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_position_embedding_types(self):
        config, *inputs = self.model_tester.prepare_config_and_inputs()
        for alibi in [True, False]:
            config.alibi = alibi
            self.model_tester.create_and_check_model(config, *inputs)

    def test_falcon_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = FalconForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_falcon_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = FalconForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_falcon_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = FalconForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_past_key_values_format(self):
        # Falcon can have different numbers of KV-heads than the number of query heads, so we need
        # to override this test to use the right head counts.
        for model_class in self.all_generative_model_classes:
            config, inputs = self.model_tester.prepare_config_and_inputs_for_common()

            # If it doesn't support cache, pass the test
            if not hasattr(config, "use_cache"):
                return

            model = model_class(config).to(torch_device)
            if "use_cache" not in inputs:
                inputs["use_cache"] = True
            outputs = model(**inputs)

            # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
            if "past_key_values" not in outputs:
                return

            num_hidden_layers = (
                getattr(config, "decoder_layers", None)
                or getattr(config, "num_decoder_layers", None)
                or config.num_hidden_layers
            )
            num_attention_heads = getattr(config, "num_kv_heads", config.num_attention_heads)
            embed_dim = getattr(config, "d_model", config.hidden_size)
            per_head_embed_dim = embed_dim // num_attention_heads

            past_kv = outputs["past_key_values"]
            self.assertEqual(len(past_kv), num_hidden_layers)

            batch_size, seq_length = inputs["input_ids"].shape
            for i in range(num_hidden_layers):
                if config.new_decoder_architecture:
                    num_attention_heads = config.num_attention_heads
                elif config.multi_query:
                    num_attention_heads = 1
                self.assertEqual(len(past_kv[0]), 2)  # K V for the decoder = 2
                self.assertEqual(
                    past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                )
                self.assertEqual(
                    past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
                )

Joao Gante's avatar
Joao Gante committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    @parameterized.expand([("linear",), ("dynamic",)])
    def test_model_rope_scaling(self, scaling_type):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        short_input = ids_tensor([1, 10], config.vocab_size)
        long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        original_model = FalconModel(config)
        original_model.to(torch_device)
        original_model.eval()
        original_short_output = original_model(short_input).last_hidden_state
        original_long_output = original_model(long_input).last_hidden_state

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        config.rope_scaling = {"type": scaling_type, "factor": 10.0}
        scaled_model = FalconModel(config)
        scaled_model.to(torch_device)
        scaled_model.eval()
        scaled_short_output = scaled_model(short_input).last_hidden_state
        scaled_long_output = scaled_model(long_input).last_hidden_state

        # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
        # maximum sequence length, so the outputs for the short input should match.
        if scaling_type == "dynamic":
            self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
        else:
            self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))

        # The output should be different for long inputs
        self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))

Matt's avatar
Matt committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

@require_torch
class FalconLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_falcon(self):
        tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b")
        model = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b")
        model.eval()
        model.to(torch_device)
        inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)

        EXPECTED_OUTPUT = (
            "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."
        )

        output_ids = model.generate(**inputs, do_sample=False, max_new_tokens=19)
        output_str = tokenizer.batch_decode(output_ids)[0]

        self.assertEqual(output_str, EXPECTED_OUTPUT)

    @slow
    def test_lm_generation_big_models(self):
        # The big models are way too big for the CI, so we use tiny random models that resemble their
        # architectures but with much smaller and fewer layers
        for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
            tokenizer = AutoTokenizer.from_pretrained(repo)
            model = FalconForCausalLM.from_pretrained(repo)
            model.eval()
            model.to(torch_device)
            inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)

            # We just test that these run without errors - the models are randomly initialized
            # and so the actual text outputs will be garbage
            model.generate(**inputs, do_sample=False, max_new_tokens=4)
            model.generate(**inputs, do_sample=True, max_new_tokens=4)
            model.generate(**inputs, num_beams=2, max_new_tokens=4)

    @slow
    def test_lm_generation_use_cache(self):
        # The big models are way too big for the CI, so we use tiny random models that resemble their
        # architectures but with much smaller and fewer layers
        with torch.no_grad():
            for repo in [
                "Rocketknight1/falcon-rw-1b",
                "Rocketknight1/tiny-random-falcon-7b",
                "Rocketknight1/tiny-random-falcon-40b",
            ]:
                tokenizer = AutoTokenizer.from_pretrained(repo)
                model = FalconForCausalLM.from_pretrained(repo)
                model.eval()
                model.to(device=torch_device)
                inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)

                # Test results are the same with and without cache
                outputs_no_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=False)
                outputs_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=True)
                self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
Lysandre Debut's avatar
Lysandre Debut committed
497

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    @require_bitsandbytes
    @slow
    def test_batched_generation(self):
        tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", padding_side="left")
        tokenizer.pad_token = tokenizer.eos_token
        model = AutoModelForCausalLM.from_pretrained(
            "tiiuae/falcon-7b",
            device_map="auto",
            load_in_4bit=True,
        )

        test_text = "A sequence: 1, 2"  # should generate the rest of the sequence

        unpadded_inputs = tokenizer([test_text], return_tensors="pt").to("cuda:0")
        unpadded_gen_out = model.generate(**unpadded_inputs, max_new_tokens=20)
        unpadded_gen_text = tokenizer.batch_decode(unpadded_gen_out, skip_special_tokens=True)

        dummy_text = "This is a longer text " * 2  # forces left-padding on `test_text`
        padded_inputs = tokenizer([test_text, dummy_text], return_tensors="pt", padding=True).to("cuda:0")
        padded_gen_out = model.generate(**padded_inputs, max_new_tokens=20)
        padded_gen_text = tokenizer.batch_decode(padded_gen_out, skip_special_tokens=True)

        expected_output = "A sequence: 1, 2, 3, 4, 5, 6, 7, 8, "
        self.assertLess(unpadded_inputs.input_ids.shape[-1], padded_inputs.input_ids.shape[-1])  # left-padding exists
        self.assertEqual(unpadded_gen_text[0], expected_output)
        self.assertEqual(padded_gen_text[0], expected_output)