run_language_modeling.py 13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
17
18
19
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
20
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
from dataclasses import dataclass, field
27
from glob import glob
Julien Chaumond's avatar
Julien Chaumond committed
28
from typing import Optional
29

30
31
from torch.utils.data import ConcatDataset

32
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
33
    CONFIG_MAPPING,
34
35
36
37
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
38
    DataCollatorForLanguageModeling,
39
    DataCollatorForPermutationLanguageModeling,
40
    DataCollatorForWholeWordMask,
Julien Chaumond's avatar
Julien Chaumond committed
41
42
    HfArgumentParser,
    LineByLineTextDataset,
43
    LineByLineWithRefDataset,
44
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
45
46
47
48
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
49
)
50

51

52
logger = logging.getLogger(__name__)
53
54


55
56
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
57
58


Julien Chaumond's avatar
Julien Chaumond committed
59
60
61
62
63
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
64

Julien Chaumond's avatar
Julien Chaumond committed
65
66
67
68
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
69
70
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
71
72
73
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
74
    )
Julien Chaumond's avatar
Julien Chaumond committed
75
76
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
77
    )
Julien Chaumond's avatar
Julien Chaumond committed
78
79
80
81
82
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
83
    )
84
85


Julien Chaumond's avatar
Julien Chaumond committed
86
87
88
89
90
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
91

Julien Chaumond's avatar
Julien Chaumond committed
92
93
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
94
    )
95
    train_data_files: Optional[str] = field(
sgugger's avatar
sgugger committed
96
97
        default=None,
        metadata={
98
            "help": "The input training data files (multiple files in glob format). "
sgugger's avatar
sgugger committed
99
100
            "Very often splitting large files to smaller files can prevent tokenizer going out of memory"
        },
101
    )
Julien Chaumond's avatar
Julien Chaumond committed
102
    eval_data_file: Optional[str] = field(
103
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
104
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
105
    )
106
    train_ref_file: Optional[str] = field(
107
        default=None,
108
109
110
111
112
        metadata={"help": "An optional input train ref data file for whole word mask in Chinese."},
    )
    eval_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."},
113
    )
Julien Chaumond's avatar
Julien Chaumond committed
114
115
116
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
117
118
    )

Julien Chaumond's avatar
Julien Chaumond committed
119
120
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
121
    )
122
    whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."})
Julien Chaumond's avatar
Julien Chaumond committed
123
124
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
125
    )
126
127
128
129
130
131
132
133
134
    plm_probability: float = field(
        default=1 / 6,
        metadata={
            "help": "Ratio of length of a span of masked tokens to surrounding context length for permutation language modeling."
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
135

Julien Chaumond's avatar
Julien Chaumond committed
136
    block_size: int = field(
137
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
138
139
140
141
142
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
143
    )
Julien Chaumond's avatar
Julien Chaumond committed
144
145
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
146
147
148
    )


149
150
151
152
153
154
def get_dataset(
    args: DataTrainingArguments,
    tokenizer: PreTrainedTokenizer,
    evaluate: bool = False,
    cache_dir: Optional[str] = None,
):
155
    def _dataset(file_path, ref_path=None):
156
        if args.line_by_line:
157
            if ref_path is not None:
158
159
160
161
162
163
                if not args.whole_word_mask or not args.mlm:
                    raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask")
                return LineByLineWithRefDataset(
                    tokenizer=tokenizer,
                    file_path=file_path,
                    block_size=args.block_size,
164
                    ref_path=ref_path,
165
166
                )

167
168
169
170
171
172
173
174
175
176
177
            return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
        else:
            return TextDataset(
                tokenizer=tokenizer,
                file_path=file_path,
                block_size=args.block_size,
                overwrite_cache=args.overwrite_cache,
                cache_dir=cache_dir,
            )

    if evaluate:
178
        return _dataset(args.eval_data_file, args.eval_ref_file)
179
180
    elif args.train_data_files:
        return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
Julien Chaumond's avatar
Julien Chaumond committed
181
    else:
182
        return _dataset(args.train_data_file, args.train_ref_file)
183

184

Julien Chaumond's avatar
Julien Chaumond committed
185
186
187
188
189
190
191
192
193
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
194
195
196
197
198
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
    if (
Julien Chaumond's avatar
Julien Chaumond committed
199
200
201
202
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
203
204
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
205
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
206
        )
207
208

    # Setup logging
209
210
211
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
212
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
213
214
215
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
216
217
218
219
220
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
221
    )
Julien Chaumond's avatar
Julien Chaumond committed
222
    logger.info("Training/evaluation parameters %s", training_args)
223
224

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
225
    set_seed(training_args.seed)
226
227

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
228
229
230
231
232
233
234
235
236
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
237
    else:
Julien Chaumond's avatar
Julien Chaumond committed
238
239
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
240

Julien Chaumond's avatar
Julien Chaumond committed
241
242
243
244
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
245
    else:
246
        raise ValueError(
247
248
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
249
250
        )

Julien Chaumond's avatar
Julien Chaumond committed
251
    if model_args.model_name_or_path:
252
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
253
254
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
255
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
256
            cache_dir=model_args.cache_dir,
257
258
259
        )
    else:
        logger.info("Training new model from scratch")
260
        model = AutoModelWithLMHead.from_config(config)
261

Julien Chaumond's avatar
Julien Chaumond committed
262
    model.resize_token_embeddings(len(tokenizer))
263

Julien Chaumond's avatar
Julien Chaumond committed
264
265
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
266
267
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
            "--mlm flag (masked language modeling)."
Julien Chaumond's avatar
Julien Chaumond committed
268
        )
269

Julien Chaumond's avatar
Julien Chaumond committed
270
271
272
273
274
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
275

Julien Chaumond's avatar
Julien Chaumond committed
276
    # Get datasets
277

278
279
280
281
282
283
284
285
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir)
        if training_args.do_eval
        else None
    )
286
287
    if config.model_type == "xlnet":
        data_collator = DataCollatorForPermutationLanguageModeling(
Lysandre's avatar
Lysandre committed
288
289
290
            tokenizer=tokenizer,
            plm_probability=data_args.plm_probability,
            max_span_length=data_args.max_span_length,
291
292
        )
    else:
293
294
295
296
297
298
299
300
        if data_args.mlm and data_args.whole_word_mask:
            data_collator = DataCollatorForWholeWordMask(
                tokenizer=tokenizer, mlm_probability=data_args.mlm_probability
            )
        else:
            data_collator = DataCollatorForLanguageModeling(
                tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
            )
301

Julien Chaumond's avatar
Julien Chaumond committed
302
303
304
305
306
307
308
309
310
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
311

Julien Chaumond's avatar
Julien Chaumond committed
312
313
314
315
316
317
318
319
320
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
321
322
323
324
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
325

Julien Chaumond's avatar
Julien Chaumond committed
326
327
    # Evaluation
    results = {}
328
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
329
        logger.info("*** Evaluate ***")
330

Julien Chaumond's avatar
Julien Chaumond committed
331
        eval_output = trainer.evaluate()
332

333
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
334
        result = {"perplexity": perplexity}
335

Julien Chaumond's avatar
Julien Chaumond committed
336
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
337
338
339
340
341
342
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
343

Julien Chaumond's avatar
Julien Chaumond committed
344
        results.update(result)
345
346
347
348

    return results


349
350
351
352
353
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


354
if __name__ == "__main__":
altsoph's avatar
altsoph committed
355
    main()