test_model_output.py 5.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2020 The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from dataclasses import dataclass
from typing import Optional

20
from transformers.testing_utils import require_torch
21
from transformers.utils import ModelOutput
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104


@dataclass
class ModelOutputTest(ModelOutput):
    a: float
    b: Optional[float] = None
    c: Optional[float] = None


class ModelOutputTester(unittest.TestCase):
    def test_get_attributes(self):
        x = ModelOutputTest(a=30)
        self.assertEqual(x.a, 30)
        self.assertIsNone(x.b)
        self.assertIsNone(x.c)
        with self.assertRaises(AttributeError):
            _ = x.d

    def test_index_with_ints_and_slices(self):
        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(x[0], 30)
        self.assertEqual(x[1], 10)
        self.assertEqual(x[:2], (30, 10))
        self.assertEqual(x[:], (30, 10))

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(x[0], 30)
        self.assertEqual(x[1], 10)
        self.assertEqual(x[:2], (30, 10))
        self.assertEqual(x[:], (30, 10))

    def test_index_with_strings(self):
        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(x["a"], 30)
        self.assertEqual(x["b"], 10)
        with self.assertRaises(KeyError):
            _ = x["c"]

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(x["a"], 30)
        self.assertEqual(x["c"], 10)
        with self.assertRaises(KeyError):
            _ = x["b"]

    def test_dict_like_properties(self):
        x = ModelOutputTest(a=30)
        self.assertEqual(list(x.keys()), ["a"])
        self.assertEqual(list(x.values()), [30])
        self.assertEqual(list(x.items()), [("a", 30)])
        self.assertEqual(list(x), ["a"])

        x = ModelOutputTest(a=30, b=10)
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(list(x.values()), [30, 10])
        self.assertEqual(list(x.items()), [("a", 30), ("b", 10)])
        self.assertEqual(list(x), ["a", "b"])

        x = ModelOutputTest(a=30, c=10)
        self.assertEqual(list(x.keys()), ["a", "c"])
        self.assertEqual(list(x.values()), [30, 10])
        self.assertEqual(list(x.items()), [("a", 30), ("c", 10)])
        self.assertEqual(list(x), ["a", "c"])

        with self.assertRaises(Exception):
            x = x.update({"d": 20})
        with self.assertRaises(Exception):
            del x["a"]
        with self.assertRaises(Exception):
            _ = x.pop("a")
        with self.assertRaises(Exception):
            _ = x.setdefault("d", 32)

    def test_set_attributes(self):
        x = ModelOutputTest(a=30)
        x.a = 10
        self.assertEqual(x.a, 10)
        self.assertEqual(x["a"], 10)

    def test_set_keys(self):
        x = ModelOutputTest(a=30)
        x["a"] = 10
        self.assertEqual(x.a, 10)
        self.assertEqual(x["a"], 10)
105
106
107
108
109
110

    def test_instantiate_from_dict(self):
        x = ModelOutputTest({"a": 30, "b": 10})
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(x.a, 30)
        self.assertEqual(x.b, 10)
111
112
113
114
115
116
117
118
119
120
121
122
123

    def test_instantiate_from_iterator(self):
        x = ModelOutputTest([("a", 30), ("b", 10)])
        self.assertEqual(list(x.keys()), ["a", "b"])
        self.assertEqual(x.a, 30)
        self.assertEqual(x.b, 10)

        with self.assertRaises(ValueError):
            _ = ModelOutputTest([("a", 30), (10, 10)])

        x = ModelOutputTest(a=(30, 30))
        self.assertEqual(list(x.keys()), ["a"])
        self.assertEqual(x.a, (30, 30))
124
125
126
127
128

    @require_torch
    def test_torch_pytree(self):
        # ensure torch.utils._pytree treats ModelOutput subclasses as nodes (and not leaves)
        # this is important for DistributedDataParallel gradient synchronization with static_graph=True
129
130
131
132
        import torch.utils._pytree as pytree

        x = ModelOutput({"a": 1.0, "c": 2.0})
        self.assertFalse(pytree._is_leaf(x))
133
134

        x = ModelOutputTest(a=1.0, c=2.0)
135
        self.assertFalse(pytree._is_leaf(x))
136
137

        expected_flat_outs = [1.0, 2.0]
138
139
        expected_tree_spec = pytree.TreeSpec(
            ModelOutputTest, (ModelOutputTest, ["a", "c"]), [pytree.LeafSpec(), pytree.LeafSpec()]
140
141
        )

142
        actual_flat_outs, actual_tree_spec = pytree.tree_flatten(x)
143
144
145
        self.assertEqual(expected_flat_outs, actual_flat_outs)
        self.assertEqual(expected_tree_spec, actual_tree_spec)

146
        unflattened_x = pytree.tree_unflatten(actual_flat_outs, actual_tree_spec)
147
        self.assertEqual(x, unflattened_x)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167


class ModelOutputTestNoDataclass(ModelOutput):
    """Invalid test subclass of ModelOutput where @dataclass decorator is not used"""

    a: float
    b: Optional[float] = None
    c: Optional[float] = None


class ModelOutputSubclassTester(unittest.TestCase):
    def test_direct_model_output(self):
        # Check that direct usage of ModelOutput instantiates without errors
        ModelOutput({"a": 1.1})

    def test_subclass_no_dataclass(self):
        # Check that a subclass of ModelOutput without @dataclass is invalid
        # A valid subclass is inherently tested other unit tests above.
        with self.assertRaises(TypeError):
            ModelOutputTestNoDataclass(a=1.1, b=2.2, c=3.3)