"tests/models/perceiver/__init__.py" did not exist on "783d7d2629e97c5f0c5f9ef01b8c66410275c204"
test_processing_fuyu.py 8.74 KB
Newer Older
Pablo Montalvo's avatar
Pablo Montalvo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import io
import unittest

import requests

from transformers import AutoTokenizer, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow


if is_vision_available():
    from PIL import Image

if is_vision_available() and is_torch_available():
    from transformers import FuyuImageProcessor, FuyuProcessor

if is_torch_available():
    import torch

    from transformers.models.fuyu.processing_fuyu import construct_full_unpacked_stream, full_unpacked_stream_to_tensor


@require_torch
@require_torch_gpu
@slow
class FuyuProcessingTest(unittest.TestCase):  # TODO Which mixins do we add here?
    """ """

    def setUp(self):
        pretrained_model_name = "huggingface/pre_release_model"
        tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name)
        image_processor = FuyuImageProcessor()

        processor = FuyuProcessor(image_processor=image_processor, tokenizer=tokenizer)
        text_prompt = "Generate a coco-style caption.\\n"
        bus_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
        bus_image_pil = Image.open(io.BytesIO(requests.get(bus_image_url).content))

        self.one_image_bus_model_inputs = processor(text=text_prompt, images=bus_image_pil)

    def test_fuyu_processing(self):
        """
        Test to ensure that the standard processing on a gold example matches adept's code.
        """
        # fmt: off
        EXPECTED_IMAGE_PATCH_INPUTS = torch.Tensor([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, -1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, -1, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, -1, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, -1, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, -1, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, -1, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, -1, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, -1, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, -1, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, -1, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, -1, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, -1, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,]]).to(torch.int64)
        EXPECTED_PADDED_UNPACKED_TOKEN_INPUTS = torch.Tensor([[71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71011, 71019, 1, 128340, 71374, 71389, 120412, 71377, 71835, 71374, 73615, 71375, 71399, 71435, 71122,]]).to(torch.int64)
        # fmt: on
        torch.testing.assert_close(
            self.one_image_bus_model_inputs["image_patches_indices"], EXPECTED_IMAGE_PATCH_INPUTS
        )
        torch.testing.assert_close(self.one_image_bus_model_inputs["input_ids"], EXPECTED_PADDED_UNPACKED_TOKEN_INPUTS)


@require_torch
class TestImageTextProcessingUtils(unittest.TestCase):
    def setUp(self):
        self.batch_size = 2
        self.new_seq_len = 8
        self.num_sub_sequences = 1

        self.all_bi_tokens_to_place = [4, 6]
        self.full_unpacked_stream = [torch.tensor([1, 2, 3, 4]), torch.tensor([5, 6, 7, 8, 9, 10])]
        self.fill_value = 0

        self.num_real_text_tokens = [[3, 2], [2, 4]]
        # Here the input stream is padded to avoid inconsistencies (current model release matches)
        self.input_stream = torch.tensor([[[1, 2, 3], [4, 5, 0]], [[6, 7, 0], [8, 9, 10]]])
        self.image_tokens = [
            [torch.tensor([1, 2]), torch.tensor([3])],
            [torch.tensor([4, 5, 6]), torch.tensor([7, 8])],
        ]

    def test_full_unpacked_stream_to_tensor(self):
        result = full_unpacked_stream_to_tensor(
            self.all_bi_tokens_to_place,
            self.full_unpacked_stream,
            self.fill_value,
            self.batch_size,
            self.new_seq_len,
            offset=0,
        )
        EXPECTED_TENSOR = torch.tensor([[1, 2, 3, 4, 0, 0, 0, 0], [5, 6, 7, 8, 9, 10, 0, 0]])
        self.assertTrue(torch.equal(result, EXPECTED_TENSOR))

    def test_construct_full_unpacked_stream(self):
        result = construct_full_unpacked_stream(
            self.num_real_text_tokens, self.input_stream, self.image_tokens, self.batch_size, self.num_sub_sequences
        )
        EXPECTED_UNPACKED_STREAM = [torch.tensor([1, 2, 1, 2, 3]), torch.tensor([4, 5, 6, 6, 7])]
        for i in range(len(result)):
            self.assertTrue(torch.equal(result[i], EXPECTED_UNPACKED_STREAM[i]))


@require_torch
class TestProcessImagesForModelInput(unittest.TestCase):
    def setUp(self):
        """
        Adding a mix of present and absent images.
        """
        self.image_processor = FuyuImageProcessor()

        self.image_input = torch.randn([1, 1, 3, 64, 64])
        self.image_present = torch.tensor([[1]])
        self.image_unpadded_h = torch.tensor([[45]])  # Adjusted for subsequence of 1
        self.image_unpadded_w = torch.tensor([[50]])  # Adjusted for subsequence of 1
        self.image_patch_dim_h = 16
        self.image_patch_dim_w = 16
        self.image_placeholder_id = 999
        self.image_newline_id = 888
        self.variable_sized = True

    def test_process_images_for_model_input_fixed_sized(self):
        self.variable_sized = False
        result = self.image_processor.process_images_for_model_input(
            image_input=self.image_input,
            image_present=self.image_present,
            image_unpadded_h=self.image_unpadded_h,
            image_unpadded_w=self.image_unpadded_w,
            image_patch_dim_h=self.image_patch_dim_h,
            image_patch_dim_w=self.image_patch_dim_w,
            image_placeholder_id=self.image_placeholder_id,
            image_newline_id=self.image_newline_id,
            variable_sized=self.variable_sized,
        )
        print(result["images"][0][0])
        self.assertEqual(result["images"][0][0].shape, torch.Size([3, 64, 64]))