test_modeling_musicgen.py 52.6 KB
Newer Older
Sanchit Gandhi's avatar
Sanchit Gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Musicgen model. """
import copy
import inspect
import math
import unittest

import numpy as np

from transformers import (
    EncodecConfig,
    MusicgenConfig,
    MusicgenDecoderConfig,
    MusicgenProcessor,
    PretrainedConfig,
    T5Config,
)
from transformers.testing_utils import is_torch_available, require_torch, slow, torch_device
from transformers.utils import cached_property

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        MusicgenForCausalLM,
        MusicgenForConditionalGeneration,
        MusicgenModel,
        set_seed,
    )
    from transformers.generation import (
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
        InfNanRemoveLogitsProcessor,
        LogitsProcessorList,
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
    )


def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
            setattr(configs_no_init, key, 1e-10)
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
    return configs_no_init


def prepare_musicgen_decoder_inputs_dict(
    config,
    input_ids,
    attention_mask=None,
    head_mask=None,
    encoder_hidden_states=None,
    encoder_attention_mask=None,
    cross_attn_head_mask=None,
):
    if attention_mask is None:
        attention_mask = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1])[:, 0, :]
        attention_mask = attention_mask.ne(config.pad_token_id)
    if head_mask is None:
        head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device)
    if encoder_attention_mask is None and encoder_hidden_states is not None:
        encoder_attention_mask = torch.ones(encoder_hidden_states.shape[:2], device=torch_device)
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device)
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "encoder_hidden_states": encoder_hidden_states,
        "encoder_attention_mask": encoder_attention_mask,
        "head_mask": head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
    }


class MusicgenDecoderTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=7,
        is_training=False,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=100,
        pad_token_id=99,
        bos_token_id=99,
        num_codebooks=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.num_codebooks = num_codebooks

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size * self.num_codebooks, self.seq_length], self.vocab_size)
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])

        config = self.get_config()
        inputs_dict = prepare_musicgen_decoder_inputs_dict(
            config, input_ids, encoder_hidden_states=encoder_hidden_states
        )
        return config, inputs_dict

    def get_config(self):
        config = MusicgenDecoderConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            d_ff=self.intermediate_size,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.bos_token_id,
            bos_token_id=self.bos_token_id,
            num_codebooks=self.num_codebooks,
            tie_word_embeddings=False,
        )
        return config

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict


@require_torch
class MusicgenDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (MusicgenModel, MusicgenForCausalLM) if is_torch_available() else ()
    greedy_sample_model_classes = (
        (MusicgenForCausalLM,) if is_torch_available() else ()
    )  # we don't want to run all the generation tests, only a specific subset
    pipeline_model_mapping = {}
    test_pruning = False
    test_resize_embeddings = False

    def setUp(self):
        self.model_tester = MusicgenDecoderTester(self)
        self.config_tester = ConfigTester(self, config_class=MusicgenDecoderConfig, hidden_size=16)

    def test_config(self):
        self.config_tester.run_common_tests()

    # override since we have to compute the input embeddings over codebooks
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            input_ids = inputs["input_ids"]
            del inputs["input_ids"]

            embed_tokens = model.get_input_embeddings()

            input_ids = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1])

            inputs["inputs_embeds"] = sum(
                [embed_tokens[codebook](input_ids[:, codebook]) for codebook in range(config.num_codebooks)]
            )

            with torch.no_grad():
                model(**inputs)[0]

    # override since we have embeddings / LM heads over multiple codebooks
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            first_embed = model.get_input_embeddings()[0]
            self.assertIsInstance(first_embed, torch.nn.Embedding)
            lm_heads = model.get_output_embeddings()
            self.assertTrue(lm_heads is None or isinstance(lm_heads[0], torch.nn.Linear))

    # skip as this model doesn't support all arguments tested
    def test_model_outputs_equivalence(self):
        pass

    # skip as this model has multiple inputs embeds and lm heads that should not be tied
    def test_tie_model_weights(self):
        pass

    # skip as this model has multiple inputs embeds and lm heads that should not be tied
    def test_tied_weights_keys(self):
        pass

    def _get_input_ids_and_config(self, batch_size=2):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict["input_ids"]

        # take max batch_size
        sequence_length = input_ids.shape[-1]
        input_ids = input_ids[: batch_size * config.num_codebooks, :]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)
        return config, input_ids, attention_mask, max_length

    @staticmethod
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
        process_kwargs = {
            "min_length": input_length + 1 if max_length is None else max_length - 1,
        }
        logits_processor = LogitsProcessorList()
        return process_kwargs, logits_processor

    # override since we don't expect the outputs of `.generate` and `.greedy_search` to be the same, since we perform
    # additional post-processing in the former
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.greedy_sample_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
            self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)

            self.assertNotIn(config.pad_token_id, output_generate)

    # override since we don't expect the outputs of `.generate` and `.greedy_search` to be the same, since we perform
    # additional post-processing in the former
    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.greedy_sample_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
            self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)

    # override since we don't expect the outputs of `.generate` and `.sample` to be the same, since we perform
    # additional post-processing in the former
    def test_sample_generate(self):
        for model_class in self.greedy_sample_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            model = model_class(config).to(torch_device).eval()

            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=2)

            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertIsInstance(output_sample, torch.Tensor)
            self.assertIsInstance(output_generate, torch.Tensor)

    # override since we don't expect the outputs of `.generate` and `.sample` to be the same, since we perform
    # additional post-processing in the former
    def test_sample_generate_dict_output(self):
        for model_class in self.greedy_sample_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()

            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
            self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)


def prepare_musicgen_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
    head_mask=None,
    decoder_head_mask=None,
    cross_attn_head_mask=None,
):
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.reshape(
            -1, config.decoder.num_codebooks, decoder_input_ids.shape[-1]
        )[:, 0, :]
        decoder_attention_mask = decoder_attention_mask.ne(config.decoder.pad_token_id)
    if head_mask is None:
        head_mask = torch.ones(
            config.text_encoder.num_hidden_layers, config.text_encoder.num_attention_heads, device=torch_device
        )
    if decoder_head_mask is None:
        decoder_head_mask = torch.ones(
            config.decoder.num_hidden_layers, config.decoder.num_attention_heads, device=torch_device
        )
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(
            config.decoder.num_hidden_layers, config.decoder.num_attention_heads, device=torch_device
        )
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "decoder_input_ids": decoder_input_ids,
        "decoder_attention_mask": decoder_attention_mask,
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
    }


class MusicgenTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=7,
        is_training=False,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=100,
        pad_token_id=99,
        bos_token_id=99,
        num_codebooks=4,
        num_filters=4,
        codebook_size=128,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.num_codebooks = num_codebooks
        self.num_filters = num_filters
        self.codebook_size = codebook_size

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        decoder_input_ids = ids_tensor([self.batch_size * self.num_codebooks, self.seq_length], self.vocab_size)

        config = self.get_config()
        inputs_dict = prepare_musicgen_inputs_dict(config, input_ids, decoder_input_ids=decoder_input_ids)
        return config, inputs_dict

    def get_config(self):
        text_encoder_config = T5Config(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.intermediate_size,
            num_layers=self.num_hidden_layers,
            num_heads=self.num_attention_heads,
        )
        audio_encoder_config = EncodecConfig(
            hidden_size=self.vocab_size,
            compress=1,
            num_filters=self.num_filters,
            codebook_size=self.codebook_size,
            codebook_dim=self.vocab_size,
        )
        decoder_config = MusicgenDecoderConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            ffn_dim=self.intermediate_size,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.bos_token_id,
            bos_token_id=self.bos_token_id,
            num_codebooks=self.num_codebooks,
            tie_word_embeddings=False,
        )
        config = MusicgenConfig.from_sub_models_config(text_encoder_config, audio_encoder_config, decoder_config)
        return config

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict


@require_torch
class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (MusicgenForConditionalGeneration,) if is_torch_available() else ()
    greedy_sample_model_classes = (MusicgenForConditionalGeneration,) if is_torch_available() else ()
    pipeline_model_mapping = {}
    test_pruning = False  # training is not supported yet for MusicGen
    test_headmasking = False
    test_resize_embeddings = False
509
510
511
    # not to test torchscript as the model tester doesn't prepare `input_values` and `padding_mask`
    # (and `torchscript` hates `None` values).
    test_torchscript = False
Sanchit Gandhi's avatar
Sanchit Gandhi committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

    def setUp(self):
        self.model_tester = MusicgenTester(self)

    def _check_output_with_attentions(self, outputs, config, input_ids, decoder_input_ids):
        text_encoder_config = config.text_encoder
        decoder_config = config.decoder

        encoder_attentions = outputs["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), text_encoder_config.num_hidden_layers)

        self.assertEqual(
            encoder_attentions[0].shape[-3:],
            (text_encoder_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),
        )

        decoder_attentions = outputs["decoder_attentions"]
        num_decoder_layers = decoder_config.num_hidden_layers
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
        )

        cross_attentions = outputs["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = decoder_input_ids.shape[-1]
        self.assertEqual(
            cross_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len, input_ids.shape[-1]),
        )

    def check_musicgen_model_output_attentions(
        self,
        model_class,
        config,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs,
    ):
        model = model_class(config)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            outputs = model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
                output_attentions=True,
                **kwargs,
            )
        self._check_output_with_attentions(outputs, config, input_ids, decoder_input_ids)

    def check_musicgen_model_output_attentions_from_config(
        self,
        model_class,
        config,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs,
    ):
        # Similar to `check_musicgen_model_output_attentions`, but with `output_attentions` triggered from the
        # config file. Contrarily to most models, changing the model's config won't work -- the defaults are loaded
        # from the inner models' configurations.
        config.output_attentions = True  # model config -> won't work

        model = model_class(config)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            outputs = model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
                **kwargs,
            )
        self.assertTrue(
            all(key not in outputs for key in ["encoder_attentions", "decoder_attentions", "cross_attentions"])
        )
        config.text_encoder.output_attentions = True  # inner model config -> will work
        config.audio_encoder.output_attentions = True
        config.decoder.output_attentions = True

        model = model_class(config)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            outputs = model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
                **kwargs,
            )
        self._check_output_with_attentions(outputs, config, input_ids, decoder_input_ids)

    # override since changing `output_attentions` from the top-level model config won't work
    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            self.check_musicgen_model_output_attentions(model_class, config, **inputs_dict)
            self.check_musicgen_model_output_attentions_from_config(model_class, config, **inputs_dict)

    # override since we have a specific forward signature for musicgen
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = [
                "input_ids",
                "attention_mask",
                "input_values",
                "padding_mask",
                "decoder_input_ids",
                "decoder_attention_mask",
            ]
            expected_arg_names.extend(
                ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
                else ["encoder_outputs"]
            )
            self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)

    # override since changing `gradient_checkpointing` from the top-level model config won't work
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.text_encoder.gradient_checkpointing = True
            config.audio_encoder.gradient_checkpointing = True
            config.decoder.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

    # skip as this model has multiple inputs embeds and lm heads that should not be tied
    def test_tie_model_weights(self):
        pass

    # skip as this model has multiple inputs embeds and lm heads that should not be tied
    def test_tied_model_weights_key_ignore(self):
        pass

    # skip as this model has multiple inputs embeds and lm heads that should not be tied
    def test_tied_weights_keys(self):
        pass

    # override since changing `output_hidden_states` / `output_attentions` from the top-level model config won't work
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.text_encoder.output_hidden_states = True
        config.audio_encoder.output_hidden_states = True
        config.decoder.output_hidden_states = True

        config.text_encoder.output_attentions = True
        config.decoder.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)

        output = outputs[0]

        encoder_hidden_states = outputs.encoder_hidden_states[0]
        encoder_hidden_states.retain_grad()

        decoder_hidden_states = outputs.decoder_hidden_states[0]
        decoder_hidden_states.retain_grad()

        if self.has_attentions:
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_attentions.retain_grad()

            decoder_attentions = outputs.decoder_attentions[0]
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(encoder_hidden_states.grad)
        self.assertIsNotNone(decoder_hidden_states.grad)

        if self.has_attentions:
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)

    # override since changing `output_hidden_states` from the top-level model config won't work
    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states

            expected_num_layers = self.model_tester.num_hidden_layers + 1
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.seq_length
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

            hidden_states = outputs.decoder_hidden_states
            self.assertIsInstance(hidden_states, (list, tuple))
            self.assertEqual(len(hidden_states), expected_num_layers)

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.text_encoder.output_hidden_states = True
            config.audio_encoder.output_hidden_states = True
            config.decoder.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    # override since the conv layers and lstm's in encodec are exceptions
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                uniform_init_parms = ["conv"]
                ignore_init = ["lstm"]
                if param.requires_grad:
780
                    if any(x in name for x in uniform_init_parms):
Sanchit Gandhi's avatar
Sanchit Gandhi committed
781
782
783
784
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
785
                    elif not any(x in name for x in ignore_init):
Sanchit Gandhi's avatar
Sanchit Gandhi committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

    # override since we have embeddings / LM heads over multiple codebooks
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), torch.nn.Embedding)
            lm_heads = model.get_output_embeddings()
            self.assertTrue(lm_heads is None or isinstance(lm_heads[0], torch.nn.Linear))

    def _get_input_ids_and_config(self, batch_size=2):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        input_ids = inputs_dict["input_ids"]

        # take max batch_size
        sequence_length = input_ids.shape[-1]
        input_ids = input_ids[:batch_size, :]
        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)

        # generate max 3 tokens
        decoder_input_ids = inputs_dict["decoder_input_ids"]
        max_length = decoder_input_ids.shape[-1] + 3
        decoder_input_ids = decoder_input_ids[: batch_size * config.decoder.num_codebooks, :]
        return config, input_ids, attention_mask, decoder_input_ids, max_length

    # override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen (input / outputs are
    # different modalities -> different shapes)
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        decoder_input_ids,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
        )

        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
            remove_invalid_values=True,
            **logits_process_kwargs,
            **model_kwargs,
        )

        encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
            model,
            input_ids,
            attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        with torch.no_grad():
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
            output_greedy = model.greedy_search(
                decoder_input_ids,
                max_length=max_length,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                encoder_outputs=encoder_outputs,
                **model_kwargs,
            )
        return output_greedy, output_generate

    # override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen (input / outputs are
    # different modalities -> different shapes)
    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        decoder_input_ids,
        max_length,
        num_return_sequences,
        logits_processor,
        logits_warper,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
            max_length=max_length,
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            remove_invalid_values=True,
            **logits_warper_kwargs,
            **process_kwargs,
            **model_kwargs,
        )

        torch.manual_seed(0)
        encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
            model,
            input_ids,
            attention_mask,
            num_interleave=num_return_sequences,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )

        # prevent flaky generation test failures
        logits_processor.append(InfNanRemoveLogitsProcessor())

        with torch.no_grad():
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
            output_sample = model.sample(
                decoder_input_ids.repeat_interleave(num_return_sequences, dim=0),
                max_length=max_length,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                encoder_outputs=encoder_outputs,
                **model_kwargs,
            )

        return output_sample, output_generate

    @staticmethod
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
        process_kwargs = {
            "min_length": input_length + 1 if max_length is None else max_length - 1,
        }
        logits_processor = LogitsProcessorList()
        return process_kwargs, logits_processor

    def test_greedy_generate_dict_outputs(self):
        for model_class in self.greedy_sample_model_classes:
            # disable cache
            config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
            self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)

            self.assertNotIn(config.pad_token_id, output_generate)

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.greedy_sample_model_classes:
            # enable cache
            config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()

            config.use_cache = True
            config.is_decoder = True
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
            self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)

    def test_sample_generate(self):
        for model_class in self.greedy_sample_model_classes:
            config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
            model = model_class(config).to(torch_device).eval()

            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=2)

            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                max_length=max_length,
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertIsInstance(output_sample, torch.Tensor)
            self.assertIsInstance(output_generate, torch.Tensor)

    def test_sample_generate_dict_output(self):
        for model_class in self.greedy_sample_model_classes:
            # disable cache
            config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()

            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
            self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)

    def test_generate_without_input_ids(self):
        config, _, _, _, max_length = self._get_input_ids_and_config()

        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return

        for model_class in self.greedy_sample_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()

            output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
            self.assertIsNotNone(output_ids_generate)

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()

        for model_class in self.greedy_sample_model_classes:
            model = model_class(config).eval().to(torch_device)
            if torch_device == "cuda":
                model.half()
            model.generate(**input_dict, max_new_tokens=10)
            model.generate(**input_dict, do_sample=True, max_new_tokens=10)


def get_bip_bip(bip_duration=0.125, duration=0.5, sample_rate=32000):
    """Produces a series of 'bip bip' sounds at a given frequency."""
    timesteps = np.arange(int(duration * sample_rate)) / sample_rate
    wav = np.cos(2 * math.pi * 440 * timesteps)
    time_period = (timesteps % (2 * bip_duration)) / (2 * bip_duration)
    envelope = time_period >= 0.5
    return wav * envelope


def place_dict_on_device(dict_to_place, device):
    for key in dict_to_place:
        if dict_to_place[key] is not None and isinstance(dict_to_place[key], torch.Tensor):
            dict_to_place[key] = dict_to_place[key].to(device)
    return dict_to_place


@require_torch
class MusicgenIntegrationTests(unittest.TestCase):
    @cached_property
    def model(self):
        return MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small").to(torch_device)

    @cached_property
    def processor(self):
        return MusicgenProcessor.from_pretrained("facebook/musicgen-small")

    @slow
    def test_logits_text_prompt(self):
        model = self.model
        processor = self.processor

        inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")

        # prepare the encoder inputs
        input_ids = inputs.input_ids.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        # prepare the decoder inputs
        pad_token_id = model.generation_config.pad_token_id
        decoder_input_ids = (
            torch.ones((input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long).to(torch_device)
            * pad_token_id
        )

        with torch.no_grad():
            logits = model(
                input_ids,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
            ).logits

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                -0.9708, -3.0149, -4.6415, -1.4754, -0.2786, -2.3523, -2.6049, -6.7467,
                -1.0206, -3.2984, -3.3968, -1.5108, -1.5786, -3.1493, -1.1503, -0.0545,
            ]
        )
        # fmt: on

        self.assertTrue(logits.shape == (*decoder_input_ids.shape, model.decoder.config.vocab_size))
        self.assertTrue(torch.allclose(logits[0, 0, :16].cpu(), EXPECTED_LOGITS, atol=1e-4))

    @slow
    def test_logits_text_audio_prompt(self):
        model = self.model
        processor = self.processor

        audio = [get_bip_bip(duration=0.5), get_bip_bip(duration=1.0)]
        text = ["80s music", "Club techno"]

        inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt")

        # prepare the text encoder inputs
        input_ids = inputs.input_ids.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        # prepare the audio encoder inputs
        input_values = inputs.input_values.to(torch_device)
        padding_mask = inputs.padding_mask.to(torch_device)

        with torch.no_grad():
            logits = model(
                input_ids,
                attention_mask=attention_mask,
                input_values=input_values,
                padding_mask=padding_mask,
            ).logits

        # fmt: off
        EXPECTED_LOGITS = torch.tensor(
            [
                0.1841, -2.9324, -0.7898, 0.1857, 0.4971, -2.8685, -1.6525, -1.6541,
                2.7757, -2.5942, -3.0959, -1.0120, -1.0147, -0.4605, -0.8885, 0.6820,
            ]
        )
        # fmt: on

        self.assertTrue(logits.shape == (8, 50, 2048))
        self.assertTrue(torch.allclose(logits[0, -1, :16].cpu(), EXPECTED_LOGITS, atol=1e-4))

    @slow
    def test_generate_unconditional_greedy(self):
        model = self.model

        # only generate 1 sample with greedy - since it's deterministic all elements of the batch will be the same
        unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
        unconditional_inputs = place_dict_on_device(unconditional_inputs, device=torch_device)

        output_values = model.generate(**unconditional_inputs, do_sample=False, max_new_tokens=5)

        # fmt: off
        EXPECTED_VALUES = torch.tensor(
            [
                0.0056, 0.0064, 0.0063, 0.0054, 0.0042, 0.0033, 0.0024, 0.0015,
                0.0015, 0.0010, 0.0004, -0.0012, -0.0036, -0.0055, -0.0067, -0.0071,
            ]
        )
        # fmt: on

        self.assertTrue(output_values.shape == (1, 1, 3200))
        self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))

    @slow
    def test_generate_unconditional_sampling(self):
        model = self.model

        # for stochastic sampling we can generate multiple outputs
        unconditional_inputs = model.get_unconditional_inputs(num_samples=2)
        unconditional_inputs = place_dict_on_device(unconditional_inputs, device=torch_device)

        set_seed(0)
        output_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=10)

        # fmt: off
        EXPECTED_VALUES = torch.tensor(
            [
                0.0765, 0.0758, 0.0749, 0.0759, 0.0759, 0.0771, 0.0775, 0.0760,
                0.0762, 0.0765, 0.0767, 0.0760, 0.0738, 0.0714, 0.0713, 0.0730,
            ]
        )
        # fmt: on

        self.assertTrue(output_values.shape == (2, 1, 4480))
        self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))

    @slow
    def test_generate_text_prompt_greedy(self):
        model = self.model
        processor = self.processor

        inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")

        # prepare the encoder inputs
        input_ids = inputs.input_ids.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        output_values = model.generate(
            input_ids, attention_mask=attention_mask, do_sample=False, guidance_scale=None, max_new_tokens=10
        )

        # fmt: off
        EXPECTED_VALUES = torch.tensor(
            [
                -1.1998e-04, -2.2302e-04, 4.6296e-04, 1.0524e-03, 2.4827e-04,
                -4.0288e-05, -1.2468e-04, 4.9846e-05, 7.1485e-04, 4.4197e-04,
            ]
        )
        # fmt: on

        self.assertTrue(output_values.shape == (2, 1, 4480))
        self.assertTrue(torch.allclose(output_values[0, 0, :10].cpu(), EXPECTED_VALUES, atol=1e-4))

    @slow
    def test_generate_text_prompt_greedy_with_classifier_free_guidance(self):
        model = self.model
        processor = self.processor

        inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")

        # prepare the encoder inputs
        input_ids = inputs.input_ids.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        output_values = model.generate(
            input_ids, attention_mask=attention_mask, do_sample=False, guidance_scale=3, max_new_tokens=10
        )

        # fmt: off
        EXPECTED_VALUES = torch.tensor(
            [
                0.0283, 0.0246, 0.0650, 0.0640, 0.0599, 0.0711, 0.0420, 0.0112,
                0.0511, 0.0746, 0.1363, 0.1213, 0.0185, -0.0578, -0.0908, 0.0443,
            ]
        )
        # fmt: on

        self.assertTrue(output_values.shape == (2, 1, 4480))
        self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))

    @slow
    def test_generate_text_prompt_sampling(self):
        model = self.model
        processor = self.processor

        inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")

        # prepare the encoder inputs
        input_ids = inputs.input_ids.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        set_seed(0)
        output_values = model.generate(
            input_ids, attention_mask=attention_mask, do_sample=True, guidance_scale=None, max_new_tokens=10
        )

        # fmt: off
        EXPECTED_VALUES = torch.tensor(
            [
                -0.0047, -0.0094, -0.0028, -0.0018, -0.0057, -0.0007, -0.0104, -0.0211,
                -0.0097, -0.0150, -0.0066, -0.0004, -0.0201, -0.0325, -0.0326, -0.0098,
            ]
        )
        # fmt: on

        self.assertTrue(output_values.shape == (2, 1, 4480))
        self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))

    @slow
    def test_generate_text_audio_prompt(self):
        model = self.model
        processor = self.processor

        audio = [get_bip_bip(duration=0.5), get_bip_bip(duration=1.0)]
        text = ["80s music", "Club techno"]

        inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt")
        inputs = place_dict_on_device(inputs, device=torch_device)

        output_values = model.generate(**inputs, do_sample=False, guidance_scale=None, max_new_tokens=10)

        # fmt: off
        EXPECTED_VALUES = torch.tensor(
            [
                -0.0036, -0.0130, -0.0261, -0.0384, -0.0557, -0.0718, -0.0680, -0.0632,
                -0.0529, -0.0403, -0.0289, -0.0198, -0.0136, -0.0101, -0.0095, -0.0040,
            ]
        )
        # fmt: on

        self.assertTrue(
            output_values.shape == (2, 1, 36480)
        )  # input values take shape 32000 and we generate from there
        self.assertTrue(torch.allclose(output_values[0, 0, -16:].cpu(), EXPECTED_VALUES, atol=1e-4))