test_tokenization_phobert.py 2.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

Sylvain Gugger's avatar
Sylvain Gugger committed
19
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

from .test_tokenization_common import TokenizerTesterMixin


class PhobertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = PhobertTokenizer

    def setUp(self):
        super().setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
        vocab = ["T@@", "i", "I", "R@@", "r", "e@@"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "l 脿</w>"]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])

        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            for token in vocab_tokens:
                fp.write("{} {}".format(token, vocab_tokens[token]) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return PhobertTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        input_text = "T么i l脿 VinAI Research"
        output_text = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
        text = "T么i l脿 VinAI Research"
        bpe_tokens = "T@@ 么@@ i l@@ 脿 V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
        tokens = tokenizer.tokenize(text)
        print(tokens)
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + [tokenizer.unk_token]

        input_bpe_tokens = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)