test_modeling_roberta.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import unittest
18

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
    import torch
29

30
31
    from transformers import (
        RobertaConfig,
32
        RobertaForCausalLM,
33
        RobertaForMaskedLM,
34
35
        RobertaForMultipleChoice,
        RobertaForQuestionAnswering,
36
37
        RobertaForSequenceClassification,
        RobertaForTokenClassification,
38
39
        RobertaModel,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    from transformers.models.roberta.modeling_roberta import (
41
42
43
        ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
        RobertaEmbeddings,
        create_position_ids_from_input_ids,
44
    )
45
46


47
48
class RobertaModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
49
50
        self,
        parent,
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
80
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = RobertaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(
138
139
140
141
142
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
146
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

Stas Bekman's avatar
Stas Bekman committed
147
148
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = RobertaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = RobertaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_masked_lm(
202
203
204
205
206
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
208
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
209

210
    def create_and_check_for_token_classification(
211
212
213
214
215
216
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = RobertaForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
217
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
218
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
219

220
    def create_and_check_for_multiple_choice(
221
222
223
224
225
226
227
228
229
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = RobertaForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
230
        result = model(
231
232
233
234
235
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
236
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
237

238
    def create_and_check_for_question_answering(
239
240
241
242
243
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
244
        result = model(
245
246
247
248
249
250
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
251
252
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


269
@require_torch
270
class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
271

272
273
    all_model_classes = (
        (
274
            RobertaForCausalLM,
275
276
277
278
279
280
281
282
283
284
            RobertaForMaskedLM,
            RobertaModel,
            RobertaForSequenceClassification,
            RobertaForTokenClassification,
            RobertaForMultipleChoice,
            RobertaForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
285
    all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else ()
286
287

    def setUp(self):
288
        self.model_tester = RobertaModelTester(self)
289
290
291
292
293
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

294
    def test_model(self):
295
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)

    def test_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_model_as_decoder(
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
333
334
335

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
336
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
337

Lysandre's avatar
Lysandre committed
338
339
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
340
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
341
342
343

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
344
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
Lysandre's avatar
Lysandre committed
345
346
347

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
348
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
Lysandre's avatar
Lysandre committed
349

350
    @slow
351
    def test_model_from_pretrained(self):
352
        for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
353
            model = RobertaModel.from_pretrained(model_name)
354
355
            self.assertIsNotNone(model)

Dom Hudson's avatar
Dom Hudson committed
356
    def test_create_position_ids_respects_padding_index(self):
Lysandre's avatar
Lysandre committed
357
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
358
359
360
361
362
363
364
365
366
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = RobertaEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
367
368
369
        expected_positions = torch.as_tensor(
            [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
        )
Dom Hudson's avatar
Dom Hudson committed
370

Sam Shleifer's avatar
Sam Shleifer committed
371
        position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
372
        self.assertEqual(position_ids.shape, expected_positions.shape)
Dom Hudson's avatar
Dom Hudson committed
373
374
375
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
Lysandre's avatar
Lysandre committed
376
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
377
378
379
380
381
382
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
383
384
385
386
387
388
389
390
391
392
393
        embeddings = RobertaEmbeddings(config=config)

        inputs_embeds = torch.Tensor(2, 4, 30)
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
394
395
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
396
397


398
399
@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
400
@require_torch
401
class RobertaModelIntegrationTest(unittest.TestCase):
402
    @slow
403
    def test_inference_masked_lm(self):
404
        model = RobertaForMaskedLM.from_pretrained("roberta-base")
405

406
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
407
408
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 50265))
409
        self.assertEqual(output.shape, expected_shape)
410
        # compare the actual values for a slice.
411
412
        expected_slice = torch.tensor(
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
413
        )
414
415
416
417
418
419

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
420

421
    @slow
422
    def test_inference_no_head(self):
423
        model = RobertaModel.from_pretrained("roberta-base")
424

425
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
426
427
        output = model(input_ids)[0]
        # compare the actual values for a slice.
428
429
        expected_slice = torch.tensor(
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
430
        )
431
432
433
434
435
436

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
437

438
    @slow
439
    def test_inference_classification_head(self):
440
        model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
441

442
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
443
444
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 3))
445
        self.assertEqual(output.shape, expected_shape)
446
447
448
449
450
451
452
        expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
        # roberta.eval()
        # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()

        self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))