gen-card-allenai-wmt19.py 3.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/usr/bin/env python

# Usage:
# ./gen-card-allenai-wmt19.py

import os
from pathlib import Path

def write_model_card(model_card_dir, src_lang, tgt_lang, model_name):

    texts = {
        "en": "Machine learning is great, isn't it?",
        "ru": "袦邪褕懈薪薪芯械 芯斜褍褔械薪懈械 - 褝褌芯 蟹写芯褉芯胁芯, 薪械 褌邪泻 谢懈?",
        "de": "Maschinelles Lernen ist gro脽artig, nicht wahr?",
    }

    # BLUE scores as follows:
    # "pair": [fairseq, transformers]
    scores = {
        "wmt19-de-en-6-6-base": [0, 38.37],
        "wmt19-de-en-6-6-big": [0, 39.90],
    }
    pair = f"{src_lang}-{tgt_lang}"

    readme = f"""
---

28
29
30
language:
- {src_lang}
- {tgt_lang}
31
32
33
34
35
thumbnail:
tags:
- translation
- wmt19
- allenai
Stas Bekman's avatar
Stas Bekman committed
36
license: apache-2.0
37
datasets:
38
- wmt19
39
metrics:
40
- bleu
41
42
43
44
45
46
---

# FSMT

## Model description

47
48
49
This is a ported version of fairseq-based [wmt19 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.

For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
50
51
52
53
54
55

2 models are available:

* [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big)
* [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base)

56

57
58
59
60
61
## Intended uses & limitations

#### How to use

```python
Sylvain Gugger's avatar
Sylvain Gugger committed
62
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
mname = "allenai/{model_name}"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

input = "{texts[src_lang]}"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}

```

#### Limitations and bias


## Training data

80
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
81
82
83
84
85
86

## Eval results

Here are the BLEU scores:

model   |  transformers
Stas Bekman's avatar
Stas Bekman committed
87
-------|---------
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
{model_name}  |  {scores[model_name][1]}

The score was calculated using this code:

```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```

107
108
109
110
## Data Sources

- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
Stas Bekman's avatar
Stas Bekman committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125


### BibTeX entry and citation info

```
@misc{{kasai2020deep,
    title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},
    author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},
    year={{2020}},
    eprint={{2006.10369}},
    archivePrefix={{arXiv}},
    primaryClass={{cs.CL}}
}}
```

126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
    model_card_dir.mkdir(parents=True, exist_ok=True)
    path = os.path.join(model_card_dir, "README.md")
    print(f"Generating {path}")
    with open(path, "w", encoding="utf-8") as f:
        f.write(readme)

# make sure we are under the root of the project
repo_dir = Path(__file__).resolve().parent.parent.parent
model_cards_dir = repo_dir / "model_cards"

for model_name in ["wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big"]:
    model_card_dir = model_cards_dir / "allenai" / model_name
    write_model_card(model_card_dir, src_lang="de", tgt_lang="en", model_name=model_name)