test_pipelines_common.py 42.5 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
17
import importlib
import logging
Sylvain Gugger's avatar
Sylvain Gugger committed
18
import os
19
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
20
21
import sys
import tempfile
22
import unittest
23
from abc import abstractmethod
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from pathlib import Path
25
26
from unittest import skipIf

27
import datasets
28
29
import numpy as np

30
import requests
31
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo, set_access_token
Sylvain Gugger's avatar
Sylvain Gugger committed
32
from requests.exceptions import HTTPError
33
from transformers import (
34
    AutoModelForSequenceClassification,
35
    AutoTokenizer,
36
    DistilBertForSequenceClassification,
37
    TextClassificationPipeline,
Sylvain Gugger's avatar
Sylvain Gugger committed
38
    TFAutoModelForSequenceClassification,
39
40
    pipeline,
)
41
42
from transformers.pipelines import PIPELINE_REGISTRY, get_task
from transformers.pipelines.base import Pipeline, _pad
43
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
44
45
    TOKEN,
    USER,
46
    CaptureLogger,
47
    RequestCounter,
Sylvain Gugger's avatar
Sylvain Gugger committed
48
    is_staging_test,
49
50
51
52
    nested_simplify,
    require_tensorflow_probability,
    require_tf,
    require_torch,
53
    require_torch_or_tf,
54
55
    slow,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
56
from transformers.utils import is_tf_available, is_torch_available
57
from transformers.utils import logging as transformers_logging
58
59


Sylvain Gugger's avatar
Sylvain Gugger committed
60
61
62
63
64
sys.path.append(str(Path(__file__).parent.parent.parent / "utils"))

from test_module.custom_pipeline import PairClassificationPipeline  # noqa E402


65
66
67
logger = logging.getLogger(__name__)


68
69
70
71
72
73
74
75
76
77
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent.parent, "src/transformers")


# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers_module = spec.loader.load_module()
78
79


80
class ANY:
81
82
    def __init__(self, *_types):
        self._types = _types
83
84

    def __eq__(self, other):
85
        return isinstance(other, self._types)
86
87

    def __repr__(self):
88
        return f"ANY({', '.join(_type.__name__ for _type in self._types)})"
89
90


91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def is_test_to_skip(test_casse_name, config_class, model_architecture, tokenizer_name, processor_name):
    """Some tests are just not working"""

    to_skip = False

    if config_class.__name__ == "RoCBertConfig" and test_casse_name in [
        "FillMaskPipelineTests",
        "FeatureExtractionPipelineTests",
        "TextClassificationPipelineTests",
        "TokenClassificationPipelineTests",
    ]:
        # Get error: IndexError: index out of range in self.
        # `word_shape_file` and `word_pronunciation_file` should be shrunk during tiny model creation,
        # otherwise `IndexError` could occur in some embedding layers. Skip for now until this model has
        # more usage.
        to_skip = True
    elif config_class.__name__ in ["LayoutLMv3Config", "LiltConfig"]:
        # Get error: ValueError: Words must be of type `List[str]`. Previously, `LayoutLMv3` is not
        # used in pipeline tests as it could not find a checkpoint
        # TODO: check and fix if possible
        to_skip = True
    # config/model class we decide to skip
    elif config_class.__name__ in ["TapasConfig"]:
        # Get error: AssertionError: Table must be of type pd.DataFrame. Also, the tiny model has large
        # vocab size as the fast tokenizer could not be converted. Previous, `Tapas` is not used in
        # pipeline tests due to the same reason.
        # TODO: check and fix if possible
        to_skip = True

    # TODO: check and fix if possible
    if not to_skip and tokenizer_name is not None:

        if (
            test_casse_name == "QAPipelineTests"
            and not tokenizer_name.endswith("Fast")
            and config_class.__name__
            in [
                "FlaubertConfig",
                "GPTJConfig",
                "LongformerConfig",
                "MvpConfig",
                "OPTConfig",
                "ReformerConfig",
                "XLMConfig",
            ]
136
        ):
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
            # `QAPipelineTests` fails for a few models when the slower tokenizer are used.
            # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
            # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
            to_skip = True
        elif test_casse_name == "ZeroShotClassificationPipelineTests" and config_class.__name__ in [
            "CTRLConfig",
            "OpenAIGPTConfig",
        ]:
            # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
            # `CTRLConfig` and `OpenAIGPTConfig` were never used in pipeline tests, either because of a missing
            # checkpoint or because a tiny config could not be created
            to_skip = True
        elif test_casse_name == "TranslationPipelineTests" and config_class.__name__ in [
            "M2M100Config",
            "PLBartConfig",
        ]:
            # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
            # `M2M100Config` and `PLBartConfig` were never used in pipeline tests: cannot create a simple tokenizer
            to_skip = True
        elif test_casse_name == "TextGenerationPipelineTests" and config_class.__name__ in [
            "ProphetNetConfig",
            "TransfoXLConfig",
        ]:
            # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
            # `TransfoXLConfig` and `ProphetNetConfig` were never used in pipeline tests: cannot create a simple
            # tokenizer.
            to_skip = True
        elif test_casse_name == "FillMaskPipelineTests" and config_class.__name__ in [
            "FlaubertConfig",
            "XLMConfig",
        ]:
            # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
            # `FlaubertConfig` and `TransfoXLConfig` were never used in pipeline tests: cannot create a simple
            # tokenizer
            to_skip = True
        elif test_casse_name == "TextGenerationPipelineTests" and model_architecture.__name__ in [
            "TFRoFormerForCausalLM"
        ]:
            # TODO: add `prepare_inputs_for_generation` for `TFRoFormerForCausalLM`
            to_skip = True
        elif test_casse_name == "QAPipelineTests" and model_architecture.__name__ in ["FNetForQuestionAnswering"]:
            # TODO: The change in `base.py` in the PR #21132 (https://github.com/huggingface/transformers/pull/21132)
            #       fails this test case. Skip for now - a fix for this along with the initial changes in PR #20426 is
            #       too much. Let `ydshieh` to fix it ASAP once #20426 is merged.
            to_skip = True

    return to_skip


def validate_test_components(test_case, model, tokenizer, processor):

    # TODO: Move this to tiny model creation script
    # head-specific (within a model type) necessary changes to the config
    # 1. for `BlenderbotForCausalLM`
    if model.__class__.__name__ == "BlenderbotForCausalLM":
        model.config.encoder_no_repeat_ngram_size = 0

    # TODO: Change the tiny model creation script: don't create models with problematic tokenizers
    # Avoid `IndexError` in embedding layers
    CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"]
    if tokenizer is not None:
        config_vocab_size = getattr(model.config, "vocab_size", None)
        # For CLIP-like models
        if config_vocab_size is None and hasattr(model.config, "text_config"):
            config_vocab_size = getattr(model.config.text_config, "vocab_size", None)
        if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE:
            raise ValueError(
                "Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`."
Arthur's avatar
Arthur committed
205
            )
206
207
208
209
210
211
212
213
214
215
216
217
        # TODO: Remove tiny models from the Hub which have problematic tokenizers (but still keep this block)
        if config_vocab_size is not None and len(tokenizer) > config_vocab_size:
            test_case.skipTest(
                f"Ignore {model.__class__.__name__}: `tokenizer` ({tokenizer.__class__.__name__}) has"
                f" {len(tokenizer)} tokens which is greater than `config_vocab_size`"
                f" ({config_vocab_size}). Something is wrong."
            )


class PipelineTestCaseMeta(type):
    def __new__(mcs, name, bases, dct):
        def gen_test(repo_name, model_architecture, tokenizer_name, processor_name):
Arthur's avatar
Arthur committed
218
            @skipIf(
219
220
221
                tokenizer_name is None and processor_name is None,
                f"Ignore {model_architecture.__name__}: no processor class is provided (tokenizer, image processor,"
                " feature extractor, etc)",
Arthur's avatar
Arthur committed
222
            )
223
            def test(self):
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
                repo_id = f"hf-internal-testing/{repo_name}"

                tokenizer = None
                if tokenizer_name is not None:
                    tokenizer_class = getattr(transformers_module, tokenizer_name)
                    tokenizer = tokenizer_class.from_pretrained(repo_id)

                processor = None
                if processor_name is not None:
                    processor_class = getattr(transformers_module, processor_name)
                    # If the required packages (like `Pillow`) are not installed, this will fail.
                    try:
                        processor = processor_class.from_pretrained(repo_id)
                    except Exception:
                        self.skipTest(f"Ignore {model_architecture.__name__}: could not load the model from {repo_id}")

240
                try:
241
242
243
244
245
246
247
                    model = model_architecture.from_pretrained(repo_id)
                except Exception:
                    self.skipTest(f"Ignore {model_architecture.__name__}: could not load the model from {repo_id}")

                # validate
                validate_test_components(self, model, tokenizer, processor)

248
249
                if hasattr(model, "eval"):
                    model = model.eval()
250
251

                pipeline, examples = self.get_test_pipeline(model, tokenizer, processor)
252
253
254
                if pipeline is None:
                    # The test can disable itself, but it should be very marginal
                    # Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
255
                    self.skipTest(f"Ignore {model_architecture.__name__}: could not create the pipeline")
256
257
258
259
260
261
262
263
264
                self.run_pipeline_test(pipeline, examples)

                def run_batch_test(pipeline, examples):
                    # Need to copy because `Conversation` are stateful
                    if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
                        return  # No batching for this and it's OK

                    # 10 examples with batch size 4 means there needs to be a unfinished batch
                    # which is important for the unbatcher
265
266
267
268
                    def data(n):
                        for _ in range(n):
                            # Need to copy because Conversation object is mutated
                            yield copy.deepcopy(random.choice(examples))
269

270
                    out = []
271
                    for item in pipeline(data(10), batch_size=4):
272
273
                        out.append(item)
                    self.assertEqual(len(out), 10)
274
275

                run_batch_test(pipeline, examples)
276
277
278

            return test

279
280
281
282
        # Download tiny model summary (used to avoid requesting from Hub too many times)
        url = "https://huggingface.co/datasets/hf-internal-testing/tiny-random-model-summary/raw/main/processor_classes.json"
        tiny_model_summary = requests.get(url).json()

283
284
285
        for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
            mapping = dct.get(key, {})
            if mapping:
286
287
                for config_class, model_architectures in mapping.items():

288
289
290
291
                    if not isinstance(model_architectures, tuple):
                        model_architectures = (model_architectures,)

                    for model_architecture in model_architectures:
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
                        model_arch_name = model_architecture.__name__
                        # Get the canonical name
                        for _prefix in ["Flax", "TF"]:
                            if model_arch_name.startswith(_prefix):
                                model_arch_name = model_arch_name[len(_prefix) :]
                                break

                        tokenizer_names = []
                        processor_names = []
                        if model_arch_name in tiny_model_summary:
                            tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"]
                            processor_names = tiny_model_summary[model_arch_name]["processor_classes"]
                        # Adding `None` (if empty) so we can generate tests
                        tokenizer_names = [None] if len(tokenizer_names) == 0 else tokenizer_names
                        processor_names = [None] if len(processor_names) == 0 else processor_names

                        repo_name = f"tiny-random-{model_arch_name}"
                        for tokenizer_name in tokenizer_names:
                            for processor_name in processor_names:
                                if is_test_to_skip(
                                    name, config_class, model_architecture, tokenizer_name, processor_name
                                ):
                                    continue
                                test_name = f"test_{prefix}_{config_class.__name__}_{model_architecture.__name__}_{tokenizer_name}_{processor_name}"
316
                                dct[test_name] = gen_test(
317
                                    repo_name, model_architecture, tokenizer_name, processor_name
318
                                )
319

320
321
322
323
324
325
326
327
        @abstractmethod
        def inner(self):
            raise NotImplementedError("Not implemented test")

        # Force these 2 methods to exist
        dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
        dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)

328
        return type.__new__(mcs, name, bases, dct)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349


class CommonPipelineTest(unittest.TestCase):
    @require_torch
    def test_pipeline_iteration(self):
        from torch.utils.data import Dataset

        class MyDataset(Dataset):
            data = [
                "This is a test",
                "This restaurant is great",
                "This restaurant is awful",
            ]

            def __len__(self):
                return 3

            def __getitem__(self, i):
                return self.data[i]

        text_classifier = pipeline(
350
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
351
352
353
354
        )
        dataset = MyDataset()
        for output in text_classifier(dataset):
            self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
355

356
357
    @require_torch
    def test_check_task_auto_inference(self):
358
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
359
360
361

        self.assertIsInstance(pipe, TextClassificationPipeline)

362
363
364
365
366
367
368
369
370
371
    @require_torch
    def test_pipeline_batch_size_global(self):
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
        self.assertEqual(pipe._batch_size, None)
        self.assertEqual(pipe._num_workers, None)

        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1)
        self.assertEqual(pipe._batch_size, 2)
        self.assertEqual(pipe._num_workers, 1)

372
373
374
375
376
377
378
379
380
    @require_torch
    def test_pipeline_pathlike(self):
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
        with tempfile.TemporaryDirectory() as d:
            pipe.save_pretrained(d)
            path = Path(d)
            newpipe = pipeline(task="text-classification", model=path)
        self.assertIsInstance(newpipe, TextClassificationPipeline)

381
382
383
384
385
    @require_torch
    def test_pipeline_override(self):
        class MyPipeline(TextClassificationPipeline):
            pass

386
        text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
387
388
389
390
391
392
393
394
395
396
397

        self.assertIsInstance(text_classifier, MyPipeline)

    def test_check_task(self):
        task = get_task("gpt2")
        self.assertEqual(task, "text-generation")

        with self.assertRaises(RuntimeError):
            # Wrong framework
            get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")

398
399
400
401
402
403
    @require_torch
    def test_iterator_data(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

404
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
405
406
407

        results = []
        for out in pipe(data(10)):
408
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
409
410
411
412
413
414
415
            results.append(out)
        self.assertEqual(len(results), 10)

        # When using multiple workers on streamable data it should still work
        # This will force using `num_workers=1` with a warning for now.
        results = []
        for out in pipe(data(10), num_workers=2):
416
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
417
418
419
420
421
422
423
424
425
            results.append(out)
        self.assertEqual(len(results), 10)

    @require_tf
    def test_iterator_data_tf(self):
        def data(n: int):
            for _ in range(n):
                yield "This is a test"

426
        pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
427
428
429
        out = pipe("This is a test")
        results = []
        for out in pipe(data(10)):
430
            self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
431
432
433
            results.append(out)
        self.assertEqual(len(results), 10)

434
435
436
    @require_torch
    def test_unbatch_attentions_hidden_states(self):
        model = DistilBertForSequenceClassification.from_pretrained(
437
            "hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
438
        )
439
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
440
441
442
443
444
445
446
        text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)

        # Used to throw an error because `hidden_states` are a tuple of tensors
        # instead of the expected tensor.
        outputs = text_classifier(["This is great !"] * 20, batch_size=32)
        self.assertEqual(len(outputs), 20)

447

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
class PipelineScikitCompatTest(unittest.TestCase):
    @require_torch
    def test_pipeline_predict_pt(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.predict(data)
        self.assertEqual(expected_output, actual_output)

    @require_tf
    def test_pipeline_predict_tf(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.predict(data)
        self.assertEqual(expected_output, actual_output)

    @require_torch
    def test_pipeline_transform_pt(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.transform(data)
        self.assertEqual(expected_output, actual_output)

    @require_tf
    def test_pipeline_transform_tf(self):
        data = ["This is a test"]

        text_classifier = pipeline(
            task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
        )

        expected_output = [{"label": ANY(str), "score": ANY(float)}]
        actual_output = text_classifier.transform(data)
        self.assertEqual(expected_output, actual_output)


498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class PipelinePadTest(unittest.TestCase):
    @require_torch
    def test_pipeline_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "input_ids": torch.LongTensor([[1, 23, 24, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 0]]),
            },
            {
                "label": "label2",
                "input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]),
                "attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "right"),
                torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "input_ids", 10, "left"),
                torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]),
            )
        )
        self.assertTrue(
            torch.allclose(
                _pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]])
            )
        )

    @require_torch
    def test_pipeline_image_padding(self):
        import torch

        items = [
            {
                "label": "label1",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
            {
                "label": "label2",
                "pixel_values": torch.zeros((1, 3, 10, 10)),
            },
        ]

        self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
        self.assertTrue(
            torch.allclose(
                _pad(items, "pixel_values", 10, "right"),
                torch.zeros((2, 3, 10, 10)),
            )
        )

    @require_torch
    def test_pipeline_offset_mapping(self):
        import torch

        items = [
            {
                "offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long),
            },
            {
                "offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long),
            },
        ]

        self.assertTrue(
            torch.allclose(
                _pad(items, "offset_mappings", 0, "right"),
                torch.zeros((2, 11, 2), dtype=torch.long),
            ),
        )
577
578
579


class PipelineUtilsTest(unittest.TestCase):
580
    @require_torch
581
582
583
584
585
586
587
588
589
590
591
592
593
    def test_pipeline_dataset(self):
        from transformers.pipelines.pt_utils import PipelineDataset

        dummy_dataset = [0, 1, 2, 3]

        def add(number, extra=0):
            return number + extra

        dataset = PipelineDataset(dummy_dataset, add, {"extra": 2})
        self.assertEqual(len(dataset), 4)
        outputs = [dataset[i] for i in range(4)]
        self.assertEqual(outputs, [2, 3, 4, 5])

594
    @require_torch
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    def test_pipeline_iterator(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [0, 1, 2, 3]

        def add(number, extra=0):
            return number + extra

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2})
        self.assertEqual(len(dataset), 4)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [2, 3, 4, 5])

609
    @require_torch
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    def test_pipeline_iterator_no_len(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        def dummy_dataset():
            for i in range(4):
                yield i

        def add(number, extra=0):
            return number + extra

        dataset = PipelineIterator(dummy_dataset(), add, {"extra": 2})
        with self.assertRaises(TypeError):
            len(dataset)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [2, 3, 4, 5])

627
    @require_torch
628
629
630
631
632
633
634
635
636
637
638
639
640
    def test_pipeline_batch_unbatch_iterator(self):
        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [{"id": [0, 1, 2]}, {"id": [3]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]]}

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}])

641
    @require_torch
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    def test_pipeline_batch_unbatch_iterator_tensors(self):
        import torch

        from transformers.pipelines.pt_utils import PipelineIterator

        dummy_dataset = [{"id": torch.LongTensor([[10, 20], [0, 1], [0, 2]])}, {"id": torch.LongTensor([[3]])}]

        def add(number, extra=0):
            return {"id": number["id"] + extra}

        dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(
            nested_simplify(outputs), [{"id": [[12, 22]]}, {"id": [[2, 3]]}, {"id": [[2, 4]]}, {"id": [[5]]}]
        )

659
    @require_torch
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    def test_pipeline_chunk_iterator(self):
        from transformers.pipelines.pt_utils import PipelineChunkIterator

        def preprocess_chunk(n: int):
            for i in range(n):
                yield i

        dataset = [2, 3]

        dataset = PipelineChunkIterator(dataset, preprocess_chunk, {}, loader_batch_size=3)

        outputs = [item for item in dataset]

        self.assertEqual(outputs, [0, 1, 0, 1, 2])

675
    @require_torch
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    def test_pipeline_pack_iterator(self):
        from transformers.pipelines.pt_utils import PipelinePackIterator

        def pack(item):
            return {"id": item["id"] + 1, "is_last": item["is_last"]}

        dataset = [
            {"id": 0, "is_last": False},
            {"id": 1, "is_last": True},
            {"id": 0, "is_last": False},
            {"id": 1, "is_last": False},
            {"id": 2, "is_last": True},
        ]

        dataset = PipelinePackIterator(dataset, pack, {})

        outputs = [item for item in dataset]
        self.assertEqual(
            outputs,
            [
                [
                    {"id": 1},
                    {"id": 2},
                ],
                [
                    {"id": 1},
                    {"id": 2},
                    {"id": 3},
                ],
            ],
        )

708
    @require_torch
709
710
711
712
713
714
715
716
717
718
719
720
    def test_pipeline_pack_unbatch_iterator(self):
        from transformers.pipelines.pt_utils import PipelinePackIterator

        dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, True, False]}, {"id": [3], "is_last": [True]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}

        dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [[{"id": 2}, {"id": 3}], [{"id": 4}, {"id": 5}]])
721
722
723
724
725
726
727
728
729
730
731

        # is_false Across batch
        dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, False, False]}, {"id": [3], "is_last": [True]}]

        def add(number, extra=0):
            return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}

        dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)

        outputs = [item for item in dataset]
        self.assertEqual(outputs, [[{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]])
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852

    @slow
    @require_torch
    def test_load_default_pipelines_pt(self):
        import torch

        from transformers.pipelines import SUPPORTED_TASKS

        set_seed_fn = lambda: torch.manual_seed(0)  # noqa: E731
        for task in SUPPORTED_TASKS.keys():
            if task == "table-question-answering":
                # test table in seperate test due to more dependencies
                continue

            self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt)

    @slow
    @require_tf
    def test_load_default_pipelines_tf(self):
        import tensorflow as tf

        from transformers.pipelines import SUPPORTED_TASKS

        set_seed_fn = lambda: tf.random.set_seed(0)  # noqa: E731
        for task in SUPPORTED_TASKS.keys():
            if task == "table-question-answering":
                # test table in seperate test due to more dependencies
                continue

            self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf)

    @slow
    @require_torch
    def test_load_default_pipelines_pt_table_qa(self):
        import torch

        set_seed_fn = lambda: torch.manual_seed(0)  # noqa: E731
        self.check_default_pipeline("table-question-answering", "pt", set_seed_fn, self.check_models_equal_pt)

    @slow
    @require_tf
    @require_tensorflow_probability
    def test_load_default_pipelines_tf_table_qa(self):
        import tensorflow as tf

        set_seed_fn = lambda: tf.random.set_seed(0)  # noqa: E731
        self.check_default_pipeline("table-question-answering", "tf", set_seed_fn, self.check_models_equal_tf)

    def check_default_pipeline(self, task, framework, set_seed_fn, check_models_equal_fn):
        from transformers.pipelines import SUPPORTED_TASKS, pipeline

        task_dict = SUPPORTED_TASKS[task]
        # test to compare pipeline to manually loading the respective model
        model = None
        relevant_auto_classes = task_dict[framework]

        if len(relevant_auto_classes) == 0:
            # task has no default
            logger.debug(f"{task} in {framework} has no default")
            return

        # by default use first class
        auto_model_cls = relevant_auto_classes[0]

        # retrieve correct model ids
        if task == "translation":
            # special case for translation pipeline which has multiple languages
            model_ids = []
            revisions = []
            tasks = []
            for translation_pair in task_dict["default"].keys():
                model_id, revision = task_dict["default"][translation_pair]["model"][framework]

                model_ids.append(model_id)
                revisions.append(revision)
                tasks.append(task + f"_{'_to_'.join(translation_pair)}")
        else:
            # normal case - non-translation pipeline
            model_id, revision = task_dict["default"]["model"][framework]

            model_ids = [model_id]
            revisions = [revision]
            tasks = [task]

        # check for equality
        for model_id, revision, task in zip(model_ids, revisions, tasks):
            # load default model
            try:
                set_seed_fn()
                model = auto_model_cls.from_pretrained(model_id, revision=revision)
            except ValueError:
                # first auto class is possible not compatible with model, go to next model class
                auto_model_cls = relevant_auto_classes[1]
                set_seed_fn()
                model = auto_model_cls.from_pretrained(model_id, revision=revision)

            # load default pipeline
            set_seed_fn()
            default_pipeline = pipeline(task, framework=framework)

            # compare pipeline model with default model
            models_are_equal = check_models_equal_fn(default_pipeline.model, model)
            self.assertTrue(models_are_equal, f"{task} model doesn't match pipeline.")

            logger.debug(f"{task} in {framework} succeeded with {model_id}.")

    def check_models_equal_pt(self, model1, model2):
        models_are_equal = True
        for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
            if model1_p.data.ne(model2_p.data).sum() > 0:
                models_are_equal = False

        return models_are_equal

    def check_models_equal_tf(self, model1, model2):
        models_are_equal = True
        for model1_p, model2_p in zip(model1.weights, model2.weights):
            if np.abs(model1_p.numpy() - model2_p.numpy()).sum() > 1e-5:
                models_are_equal = False

        return models_are_equal
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873


class CustomPipeline(Pipeline):
    def _sanitize_parameters(self, **kwargs):
        preprocess_kwargs = {}
        if "maybe_arg" in kwargs:
            preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
        return preprocess_kwargs, {}, {}

    def preprocess(self, text, maybe_arg=2):
        input_ids = self.tokenizer(text, return_tensors="pt")
        return input_ids

    def _forward(self, model_inputs):
        outputs = self.model(**model_inputs)
        return outputs

    def postprocess(self, model_outputs):
        return model_outputs["logits"].softmax(-1).numpy()


Sylvain Gugger's avatar
Sylvain Gugger committed
874
class CustomPipelineTest(unittest.TestCase):
875
876
877
878
879
    def test_warning_logs(self):
        transformers_logging.set_verbosity_debug()
        logger_ = transformers_logging.get_logger("transformers.pipelines.base")

        alias = "text-classification"
880
881
        # Get the original task, so we can restore it at the end.
        # (otherwise the subsequential tests in `TextClassificationPipelineTests` will fail)
Sylvain Gugger's avatar
Sylvain Gugger committed
882
        _, original_task, _ = PIPELINE_REGISTRY.check_task(alias)
883
884
885

        try:
            with CaptureLogger(logger_) as cm:
Sylvain Gugger's avatar
Sylvain Gugger committed
886
                PIPELINE_REGISTRY.register_pipeline(alias, PairClassificationPipeline)
887
888
889
            self.assertIn(f"{alias} is already registered", cm.out)
        finally:
            # restore
Sylvain Gugger's avatar
Sylvain Gugger committed
890
            PIPELINE_REGISTRY.supported_tasks[alias] = original_task
891
892

    def test_register_pipeline(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
893
894
895
896
897
898
899
900
        PIPELINE_REGISTRY.register_pipeline(
            "custom-text-classification",
            pipeline_class=PairClassificationPipeline,
            pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
            tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
            default={"pt": "hf-internal-testing/tiny-random-distilbert"},
            type="text",
        )
901
902
        assert "custom-text-classification" in PIPELINE_REGISTRY.get_supported_tasks()

Sylvain Gugger's avatar
Sylvain Gugger committed
903
        _, task_def, _ = PIPELINE_REGISTRY.check_task("custom-text-classification")
Sylvain Gugger's avatar
Sylvain Gugger committed
904
905
        self.assertEqual(task_def["pt"], (AutoModelForSequenceClassification,) if is_torch_available() else ())
        self.assertEqual(task_def["tf"], (TFAutoModelForSequenceClassification,) if is_tf_available() else ())
906
        self.assertEqual(task_def["type"], "text")
Sylvain Gugger's avatar
Sylvain Gugger committed
907
908
909
910
911
912
        self.assertEqual(task_def["impl"], PairClassificationPipeline)
        self.assertEqual(task_def["default"], {"model": {"pt": "hf-internal-testing/tiny-random-distilbert"}})

        # Clean registry for next tests.
        del PIPELINE_REGISTRY.supported_tasks["custom-text-classification"]

913
    @require_torch_or_tf
Sylvain Gugger's avatar
Sylvain Gugger committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
    def test_dynamic_pipeline(self):
        PIPELINE_REGISTRY.register_pipeline(
            "pair-classification",
            pipeline_class=PairClassificationPipeline,
            pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
            tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
        )

        classifier = pipeline("pair-classification", model="hf-internal-testing/tiny-random-bert")

        # Clean registry as we won't need the pipeline to be in it for the rest to work.
        del PIPELINE_REGISTRY.supported_tasks["pair-classification"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            classifier.save_pretrained(tmp_dir)
            # checks
            self.assertDictEqual(
                classifier.model.config.custom_pipelines,
                {
                    "pair-classification": {
                        "impl": "custom_pipeline.PairClassificationPipeline",
                        "pt": ("AutoModelForSequenceClassification",) if is_torch_available() else (),
                        "tf": ("TFAutoModelForSequenceClassification",) if is_tf_available() else (),
                    }
                },
            )
            # Fails if the user forget to pass along `trust_remote_code=True`
            with self.assertRaises(ValueError):
                _ = pipeline(model=tmp_dir)

            new_classifier = pipeline(model=tmp_dir, trust_remote_code=True)
            # Using trust_remote_code=False forces the traditional pipeline tag
            old_classifier = pipeline("text-classification", model=tmp_dir, trust_remote_code=False)
        # Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
        # dynamic module
        self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
        self.assertEqual(new_classifier.task, "pair-classification")
        results = new_classifier("I hate you", second_text="I love you")
        self.assertDictEqual(
            nested_simplify(results),
            {"label": "LABEL_0", "score": 0.505, "logits": [-0.003, -0.024]},
        )

        self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
        self.assertEqual(old_classifier.task, "text-classification")
        results = old_classifier("I hate you", text_pair="I love you")
        self.assertListEqual(
            nested_simplify(results),
            [{"label": "LABEL_0", "score": 0.505}],
        )

965
    @require_torch_or_tf
966
967
968
969
970
971
    def test_cached_pipeline_has_minimum_calls_to_head(self):
        # Make sure we have cached the pipeline.
        _ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
972
            self.assertEqual(counter.head_request_count, 1)
973
974
            self.assertEqual(counter.other_request_count, 0)

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
    @require_torch
    def test_chunk_pipeline_batching_single_file(self):
        # Make sure we have cached the pipeline.
        pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
        ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
        # For some reason scoping doesn't work if not using `self.`
        self.COUNT = 0
        forward = pipe.model.forward

        def new_forward(*args, **kwargs):
            self.COUNT += 1
            return forward(*args, **kwargs)

        pipe.model.forward = new_forward

        for out in pipe(audio, return_timestamps="char", chunk_length_s=3, stride_length_s=[1, 1], batch_size=1024):
            pass

        self.assertEqual(self.COUNT, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

@require_torch
@is_staging_test
class DynamicPipelineTester(unittest.TestCase):
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "I", "love", "hate", "you"]

    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, repo_id="test-dynamic-pipeline")
        except HTTPError:
            pass

    def test_push_to_hub_dynamic_pipeline(self):
        from transformers import BertConfig, BertForSequenceClassification, BertTokenizer

        PIPELINE_REGISTRY.register_pipeline(
            "pair-classification",
            pipeline_class=PairClassificationPipeline,
            pt_model=AutoModelForSequenceClassification,
        )

        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertForSequenceClassification(config).eval()

        with tempfile.TemporaryDirectory() as tmp_dir:
1032
1033
            create_repo(f"{USER}/test-dynamic-pipeline", token=self._token)
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-pipeline", token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = BertTokenizer(vocab_file)

            classifier = pipeline("pair-classification", model=model, tokenizer=tokenizer)

            # Clean registry as we won't need the pipeline to be in it for the rest to work.
            del PIPELINE_REGISTRY.supported_tasks["pair-classification"]

            classifier.save_pretrained(tmp_dir)
            # checks
            self.assertDictEqual(
                classifier.model.config.custom_pipelines,
                {
                    "pair-classification": {
                        "impl": "custom_pipeline.PairClassificationPipeline",
                        "pt": ("AutoModelForSequenceClassification",),
                        "tf": (),
                    }
                },
            )

            repo.push_to_hub()

        # Fails if the user forget to pass along `trust_remote_code=True`
        with self.assertRaises(ValueError):
            _ = pipeline(model=f"{USER}/test-dynamic-pipeline")

        new_classifier = pipeline(model=f"{USER}/test-dynamic-pipeline", trust_remote_code=True)
        # Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
        # dynamic module
        self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")

        results = classifier("I hate you", second_text="I love you")
        new_results = new_classifier("I hate you", second_text="I love you")
        self.assertDictEqual(nested_simplify(results), nested_simplify(new_results))

        # Using trust_remote_code=False forces the traditional pipeline tag
        old_classifier = pipeline(
            "text-classification", model=f"{USER}/test-dynamic-pipeline", trust_remote_code=False
        )
        self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
        self.assertEqual(old_classifier.task, "text-classification")
        new_results = old_classifier("I hate you", text_pair="I love you")
        self.assertListEqual(
            nested_simplify([{"label": results["label"], "score": results["score"]}]), nested_simplify(new_results)
        )