test_modeling_tf_electra.py 10.2 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import ElectraConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Lysandre Debut's avatar
Lysandre Debut committed
21
22
23
24
25
26

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
27
28
    import tensorflow as tf

Lysandre Debut's avatar
Lysandre Debut committed
29
30
31
    from transformers.modeling_tf_electra import (
        TFElectraModel,
        TFElectraForMaskedLM,
32
        TFElectraForMultipleChoice,
Lysandre Debut's avatar
Lysandre Debut committed
33
        TFElectraForPreTraining,
34
        TFElectraForSequenceClassification,
Lysandre Debut's avatar
Lysandre Debut committed
35
        TFElectraForTokenClassification,
36
        TFElectraForQuestionAnswering,
Lysandre Debut's avatar
Lysandre Debut committed
37
38
39
    )


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class TFElectraModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
            return_dict=True,
99
100
101
102
103
104
105
106
107
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_electra_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
108
        result = model(inputs)
109
110

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
111
        result = model(inputs)
112

Sylvain Gugger's avatar
Sylvain Gugger committed
113
        result = model(input_ids)
114
115

        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
116
            list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size]
117
118
119
120
121
122
123
        )

    def create_and_check_electra_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])
126
127
128
129
130
131

    def create_and_check_electra_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForPreTraining(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
        result = model(inputs)
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length])
134

135
136
137
138
139
140
    def create_and_check_electra_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForSequenceClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
141
        result = model(inputs)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])

    def create_and_check_electra_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFElectraForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
157
        result = model(inputs)
158
159
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])

160
161
162
163
164
    def create_and_check_electra_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFElectraForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
165
        result = model(inputs)
166
167
168
        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

169
170
171
172
173
174
    def create_and_check_electra_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFElectraForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
175
        result = model(inputs)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


Lysandre Debut's avatar
Lysandre Debut committed
193
194
195
196
197
198
199
200
201
202
@require_tf
class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (TFElectraModel, TFElectraForMaskedLM, TFElectraForPreTraining, TFElectraForTokenClassification,)
        if is_tf_available()
        else ()
    )

    def setUp(self):
203
        self.model_tester = TFElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_electra_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)

221
222
223
224
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)

225
226
227
228
229
230
231
232
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
233
234
235
236
237
238
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
239
        # for model_name in TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
240
        for model_name in ["google/electra-small-discriminator"]:
241
            model = TFElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
242
            self.assertIsNotNone(model)