test_modeling_tf_xlm_roberta.py 1.89 KB
Newer Older
Julien Plu's avatar
Julien Plu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import is_tf_available
19
from transformers.testing_utils import require_tf, slow
Julien Plu's avatar
Julien Plu committed
20
21
22
23


if is_tf_available():
    import numpy as np
24
25
    import tensorflow as tf

Julien Plu's avatar
Julien Plu committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    from transformers import TFXLMRobertaModel


@require_tf
class TFFlaubertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_output_embeds_base_model(self):
        model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base")

        features = {
            "input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]], dtype=tf.int32),  # "My dog is cute"
            "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]], dtype=tf.int32),
        }

Sylvain Gugger's avatar
Sylvain Gugger committed
40
        output = model(features)["last_hidden_state"]
Julien Plu's avatar
Julien Plu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        expected_shape = tf.TensorShape((1, 6, 768))
        self.assertEqual(output.shape, expected_shape)
        # compare the actual values for a slice.
        expected_slice = tf.convert_to_tensor(
            [
                [
                    [0.0681762, 0.10894451, 0.06772504],
                    [-0.06423668, 0.02366615, 0.04329344],
                    [-0.06057295, 0.09974135, -0.00070584],
                ]
            ],
            dtype=tf.float32,
        )

        self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))