"...lm-evaluation-harness.git" did not exist on "7bc9b82bbfc1f8293518d24a648002bd484985e3"
train.py 13.3 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
VictorSanh's avatar
VictorSanh committed
16
17
Training the distilled model.
Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2.
VictorSanh's avatar
VictorSanh committed
18
"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22
23
24
25
26
import os
import argparse
import pickle
import json
import shutil
import numpy as np
import torch

VictorSanh's avatar
VictorSanh committed
27
28
29
30
from transformers import BertConfig, BertForMaskedLM, BertTokenizer
from transformers import RobertaConfig, RobertaForMaskedLM, RobertaTokenizer
from transformers import DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer
from transformers import GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
VictorSanh's avatar
VictorSanh committed
31
32
33

from distiller import Distiller
from utils import git_log, logger, init_gpu_params, set_seed
VictorSanh's avatar
VictorSanh committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from lm_seqs_dataset import LmSeqsDataset


MODEL_CLASSES = {
    'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
    'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
    'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer)
}

def sanity_checks(args):
    """
    A bunch of args sanity checks to perform even starting...
    """
    assert (args.mlm and args.alpha_mlm > 0.) or (not args.mlm and args.alpha_mlm == 0.)
    assert (args.alpha_mlm > 0. and args.alpha_clm == 0.) or (args.alpha_mlm == 0. and args.alpha_clm > 0.)
    if args.mlm:
        assert os.path.isfile(args.token_counts)
        assert (args.student_type in ['roberta', 'distilbert']) and (args.teacher_type in ['roberta', 'bert'])
    else:
        assert (args.student_type in ['gpt2']) and (args.teacher_type in ['gpt2'])

    assert args.teacher_type == args.student_type or (args.student_type=='distilbert' and args.teacher_type=='bert')
    assert os.path.isfile(args.student_config)
    if args.student_pretrained_weights is not None:
        assert os.path.isfile(args.student_pretrained_weights)

    if args.freeze_token_type_embds: assert args.student_type in ['roberta']

    assert args.alpha_ce >= 0.
    assert args.alpha_mlm >= 0.
    assert args.alpha_clm >= 0.
    assert args.alpha_mse >= 0.
    assert args.alpha_cos >= 0.
    assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.

def freeze_pos_embeddings(student, args):
    if args.student_type == 'roberta':
        student.roberta.embeddings.position_embeddings.weight.requires_grad = False
    elif args.student_type == 'gpt2':
        student.transformer.wpe.weight.requires_grad = False
VictorSanh's avatar
VictorSanh committed
75

VictorSanh's avatar
VictorSanh committed
76
77
78
def freeze_token_type_embeddings(student, args):
    if args.student_type == 'roberta':
        student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False
VictorSanh's avatar
VictorSanh committed
79
80
81

def main():
    parser = argparse.ArgumentParser(description="Training")
VictorSanh's avatar
VictorSanh committed
82
83
    parser.add_argument("--force", action='store_true',
                        help="Overwrite dump_path if it already exists.")
VictorSanh's avatar
VictorSanh committed
84
85
86
87
88
89

    parser.add_argument("--dump_path", type=str, required=True,
                        help="The output directory (log, checkpoints, parameters, etc.)")
    parser.add_argument("--data_file", type=str, required=True,
                        help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.")

VictorSanh's avatar
VictorSanh committed
90
91
92
93
94
    parser.add_argument("--student_type", type=str, choices=["distilbert", "roberta", "gpt2"], required=True,
                        help="The student type (DistilBERT, RoBERTa).")
    parser.add_argument("--student_config", type=str, required=True,
                        help="Path to the student configuration.")
    parser.add_argument("--student_pretrained_weights", default=None, type=str,
VictorSanh's avatar
VictorSanh committed
95
                        help="Load student initialization checkpoint.")
VictorSanh's avatar
VictorSanh committed
96
97

    parser.add_argument("--teacher_type", choices=["bert", "roberta", "gpt2"], required=True,
98
                        help="Teacher type (BERT, RoBERTa).")
VictorSanh's avatar
VictorSanh committed
99
    parser.add_argument("--teacher_name", type=str, required=True,
100
                        help="The teacher model.")
VictorSanh's avatar
VictorSanh committed
101
102
103
104
105

    parser.add_argument("--temperature", default=2., type=float,
                        help="Temperature for the softmax temperature.")
    parser.add_argument("--alpha_ce", default=0.5, type=float,
                        help="Linear weight for the distillation loss. Must be >=0.")
VictorSanh's avatar
VictorSanh committed
106
107
108
109
    parser.add_argument("--alpha_mlm", default=0.0, type=float,
                        help="Linear weight for the MLM loss. Must be >=0. Should be used in coonjunction with `mlm` flag.")
    parser.add_argument("--alpha_clm", default=0.5, type=float,
                        help="Linear weight for the CLM loss. Must be >=0.")
VictorSanh's avatar
VictorSanh committed
110
111
    parser.add_argument("--alpha_mse", default=0.0, type=float,
                        help="Linear weight of the MSE loss. Must be >=0.")
112
113
    parser.add_argument("--alpha_cos", default=0.0, type=float,
                        help="Linear weight of the cosine embedding loss. Must be >=0.")
VictorSanh's avatar
VictorSanh committed
114
115
116

    parser.add_argument("--mlm", action="store_true",
                        help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.")
VictorSanh's avatar
VictorSanh committed
117
118
119
120
121
122
123
124
125
126
    parser.add_argument("--mlm_mask_prop", default=0.15, type=float,
                        help="Proportion of tokens for which we need to make a prediction.")
    parser.add_argument("--word_mask", default=0.8, type=float,
                        help="Proportion of tokens to mask out.")
    parser.add_argument("--word_keep", default=0.1, type=float,
                        help="Proportion of tokens to keep.")
    parser.add_argument("--word_rand", default=0.1, type=float,
                        help="Proportion of tokens to randomly replace.")
    parser.add_argument("--mlm_smoothing", default=0.7, type=float,
                        help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).")
VictorSanh's avatar
VictorSanh committed
127
128
129
    parser.add_argument("--token_counts", type=str,
                        help="The token counts in the data_file for MLM.")

VictorSanh's avatar
VictorSanh committed
130
131
    parser.add_argument("--restrict_ce_to_mask", action='store_true',
                        help="If true, compute the distilation loss only the [MLM] prediction distribution.")
VictorSanh's avatar
VictorSanh committed
132
133
134
135
    parser.add_argument("--freeze_pos_embs", action="store_true",
                        help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.")
    parser.add_argument("--freeze_token_type_embds", action="store_true",
                        help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.")
VictorSanh's avatar
VictorSanh committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    parser.add_argument("--n_epoch", type=int, default=3,
                        help="Number of pass on the whole dataset.")
    parser.add_argument("--batch_size", type=int, default=5,
                        help="Batch size (for each process).")
    parser.add_argument("--group_by_size", action='store_false',
                        help="If true, group sequences that have similar length into the same batch. Default is true.")

    parser.add_argument("--gradient_accumulation_steps", type=int, default=50,
                        help="Gradient accumulation for larger training batches.")
    parser.add_argument("--warmup_prop", default=0.05, type=float,
                        help="Linear warmup proportion.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--learning_rate", default=5e-4, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--adam_epsilon", default=1e-6, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=5.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--initializer_range", default=0.02, type=float,
                        help="Random initialization range.")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--n_gpu", type=int, default=1,
                        help="Number of GPUs in the node.")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="Distributed training - Local rank")
    parser.add_argument("--seed", type=int, default=56,
                        help="Random seed")

    parser.add_argument("--log_interval", type=int, default=500,
                        help="Tensorboard logging interval.")
    parser.add_argument("--checkpoint_interval", type=int, default=4000,
                        help="Checkpoint interval.")
    args = parser.parse_args()
VictorSanh's avatar
VictorSanh committed
176
    sanity_checks(args)
VictorSanh's avatar
VictorSanh committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200


    ## ARGS ##
    init_gpu_params(args)
    set_seed(args)
    if args.is_master:
        if os.path.exists(args.dump_path):
            if not args.force:
                raise ValueError(f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it'
                                   'Use `--force` if you want to overwrite it')
            else:
                shutil.rmtree(args.dump_path)

        if not os.path.exists(args.dump_path):
            os.makedirs(args.dump_path)
        logger.info(f'Experiment will be dumped and logged in {args.dump_path}')


        ### SAVE PARAMS ###
        logger.info(f'Param: {args}')
        with open(os.path.join(args.dump_path, 'parameters.json'), 'w') as f:
            json.dump(vars(args), f, indent=4)
        git_log(args.dump_path)

VictorSanh's avatar
VictorSanh committed
201
202
    student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type]
    teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type]
VictorSanh's avatar
VictorSanh committed
203
204

    ### TOKENIZER ###
VictorSanh's avatar
VictorSanh committed
205
    tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name)
VictorSanh's avatar
VictorSanh committed
206
    special_tok_ids = {}
207
208
209
    for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
        idx = tokenizer.all_special_tokens.index(tok_symbol)
        special_tok_ids[tok_name] = tokenizer.all_special_ids[idx]
VictorSanh's avatar
VictorSanh committed
210
211
    logger.info(f'Special tokens {special_tok_ids}')
    args.special_tok_ids = special_tok_ids
VictorSanh's avatar
VictorSanh committed
212
    args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name]
VictorSanh's avatar
VictorSanh committed
213
214
215
216
217
218
219
220


    ## DATA LOADER ##
    logger.info(f'Loading data from {args.data_file}')
    with open(args.data_file, 'rb') as fp:
        data = pickle.load(fp)


VictorSanh's avatar
VictorSanh committed
221
222
223
224
225
226
227
228
229
230
231
    if args.mlm:
        logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)')
        with open(args.token_counts, 'rb') as fp:
            counts = pickle.load(fp)
        
        token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing
        for idx in special_tok_ids.values():
            token_probs[idx] = 0.  # do not predict special tokens
        token_probs = torch.from_numpy(token_probs)
    else:
        token_probs = None
VictorSanh's avatar
VictorSanh committed
232
233


VictorSanh's avatar
VictorSanh committed
234
    train_lm_seq_dataset = LmSeqsDataset(params=args, data=data)
VictorSanh's avatar
VictorSanh committed
235
236
237
238
    logger.info(f'Data loader created.')


    ## STUDENT ##
VictorSanh's avatar
VictorSanh committed
239
240
241
242
243
244
245
246
    logger.info(f'Loading student config from {args.student_config}')
    stu_architecture_config = student_config_class.from_pretrained(args.student_config)
    stu_architecture_config.output_hidden_states = True

    if args.student_pretrained_weights is not None:
        logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}')
        student = student_model_class.from_pretrained(args.student_pretrained_weights,
                                                      config=stu_architecture_config)
VictorSanh's avatar
VictorSanh committed
247
    else:
VictorSanh's avatar
VictorSanh committed
248
        student = student_model_class(stu_architecture_config)
VictorSanh's avatar
VictorSanh committed
249
250
251
252
253
254
255
256


    if args.n_gpu > 0:
        student.to(f'cuda:{args.local_rank}')
    logger.info(f'Student loaded.')


    ## TEACHER ##
VictorSanh's avatar
VictorSanh committed
257
    teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True)
VictorSanh's avatar
VictorSanh committed
258
259
    if args.n_gpu > 0:
        teacher.to(f'cuda:{args.local_rank}')
260
    logger.info(f'Teacher loaded from {args.teacher_name}.')
VictorSanh's avatar
VictorSanh committed
261

VictorSanh's avatar
VictorSanh committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    ## FREEZING ##
    if args.freeze_pos_embs:
        freeze_pos_embeddings(student, args)
    if args.freeze_token_type_embds:
        freeze_token_type_embeddings(student, args)


    ## SANITY CHECKS ##
    assert student.config.vocab_size == teacher.config.vocab_size
    assert student.config.hidden_size == teacher.config.hidden_size
    assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
    if args.mlm:
        assert token_probs.size(0) == stu_architecture_config.vocab_size


VictorSanh's avatar
VictorSanh committed
278
279
280
    ## DISTILLER ##
    torch.cuda.empty_cache()
    distiller = Distiller(params=args,
VictorSanh's avatar
VictorSanh committed
281
                          dataset=train_lm_seq_dataset,
VictorSanh's avatar
VictorSanh committed
282
283
284
285
286
287
288
289
290
                          token_probs=token_probs,
                          student=student,
                          teacher=teacher)
    distiller.train()
    logger.info("Let's go get some drinks.")


if __name__ == "__main__":
    main()