file_utils.py 11.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
"""
Utilities for working with the local dataset cache.
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
Copyright by the AllenNLP authors.
"""
thomwolf's avatar
thomwolf committed
6
from __future__ import (absolute_import, division, print_function, unicode_literals)
thomwolf's avatar
thomwolf committed
7

8
import sys
thomwolf's avatar
thomwolf committed
9
import json
thomwolf's avatar
thomwolf committed
10
import logging
thomwolf's avatar
thomwolf committed
11
import os
12
import six
thomwolf's avatar
thomwolf committed
13
14
import shutil
import tempfile
15
import fnmatch
thomwolf's avatar
thomwolf committed
16
from functools import wraps
thomwolf's avatar
thomwolf committed
17
18
from hashlib import sha256
from io import open
thomwolf's avatar
thomwolf committed
19
20

import boto3
21
from botocore.config import Config
thomwolf's avatar
thomwolf committed
22
from botocore.exceptions import ClientError
23
import requests
thomwolf's avatar
thomwolf committed
24
from tqdm import tqdm
thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
try:
    import tensorflow as tf
    assert int(tf.__version__[0]) >= 2
    _tf_available = True  # pylint: disable=invalid-name
except (ImportError, AssertionError):
    _tf_available = False  # pylint: disable=invalid-name

try:
    import torch
    _torch_available = True  # pylint: disable=invalid-name
except ImportError:
    _torch_available = False  # pylint: disable=invalid-name


40
41
42
43
44
45
46
try:
    from torch.hub import _get_torch_home
    torch_cache_home = _get_torch_home()
except ImportError:
    torch_cache_home = os.path.expanduser(
        os.getenv('TORCH_HOME', os.path.join(
            os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')))
thomwolf's avatar
thomwolf committed
47
default_cache_path = os.path.join(torch_cache_home, 'pytorch_transformers')
48

thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
try:
    from urllib.parse import urlparse
except ImportError:
    from urlparse import urlparse

try:
    from pathlib import Path
56
    PYTORCH_PRETRAINED_BERT_CACHE = Path(
57
        os.getenv('PYTORCH_TRANSFORMERS_CACHE', os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path)))
58
except (AttributeError, ImportError):
59
60
61
62
63
    PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_TRANSFORMERS_CACHE',
                                              os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
                                                        default_cache_path))

PYTORCH_TRANSFORMERS_CACHE = PYTORCH_PRETRAINED_BERT_CACHE  # Kept for backward compatibility
thomwolf's avatar
thomwolf committed
64

65
WEIGHTS_NAME = "pytorch_model.bin"
thomwolf's avatar
thomwolf committed
66
TF2_WEIGHTS_NAME = 'tf_model.h5'
67
68
69
TF_WEIGHTS_NAME = 'model.ckpt'
CONFIG_NAME = "config.json"

thomwolf's avatar
thomwolf committed
70
logger = logging.getLogger(__name__)  # pylint: disable=invalid-name
thomwolf's avatar
thomwolf committed
71

thomwolf's avatar
thomwolf committed
72
73
74
75
76
77
def is_torch_available():
    return _torch_available

def is_tf_available():
    return _tf_available

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
if not six.PY2:
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = ''.join(docstr) + fn.__doc__
            return fn
        return docstring_decorator

    def add_end_docstrings(*docstr):
        def docstring_decorator(fn):
            fn.__doc__ = fn.__doc__ + ''.join(docstr)
            return fn
        return docstring_decorator
else:
    # Not possible to update class docstrings on python2
    def add_start_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator

    def add_end_docstrings(*docstr):
        def docstring_decorator(fn):
            return fn
        return docstring_decorator
thomwolf's avatar
thomwolf committed
101

thomwolf's avatar
thomwolf committed
102
def url_to_filename(url, etag=None):
thomwolf's avatar
thomwolf committed
103
104
105
106
    """
    Convert `url` into a hashed filename in a repeatable way.
    If `etag` is specified, append its hash to the url's, delimited
    by a period.
thomwolf's avatar
thomwolf committed
107
108
109
    If the url ends with .h5 (Keras HDF5 weights) ands '.h5' to the name
    so that TF 2.0 can identify it as a HDF5 file
    (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380)
thomwolf's avatar
thomwolf committed
110
111
112
113
114
115
116
117
118
119
    """
    url_bytes = url.encode('utf-8')
    url_hash = sha256(url_bytes)
    filename = url_hash.hexdigest()

    if etag:
        etag_bytes = etag.encode('utf-8')
        etag_hash = sha256(etag_bytes)
        filename += '.' + etag_hash.hexdigest()

thomwolf's avatar
thomwolf committed
120
121
122
    if url.endswith('.h5'):
        filename += '.h5'

thomwolf's avatar
thomwolf committed
123
124
125
    return filename


thomwolf's avatar
thomwolf committed
126
def filename_to_url(filename, cache_dir=None):
thomwolf's avatar
thomwolf committed
127
128
    """
    Return the url and etag (which may be ``None``) stored for `filename`.
thomwolf's avatar
thomwolf committed
129
    Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
thomwolf's avatar
thomwolf committed
130
131
    """
    if cache_dir is None:
132
        cache_dir = PYTORCH_TRANSFORMERS_CACHE
133
134
    if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
135
136
137

    cache_path = os.path.join(cache_dir, filename)
    if not os.path.exists(cache_path):
thomwolf's avatar
thomwolf committed
138
        raise EnvironmentError("file {} not found".format(cache_path))
thomwolf's avatar
thomwolf committed
139
140
141

    meta_path = cache_path + '.json'
    if not os.path.exists(meta_path):
thomwolf's avatar
thomwolf committed
142
        raise EnvironmentError("file {} not found".format(meta_path))
thomwolf's avatar
thomwolf committed
143

thomwolf's avatar
thomwolf committed
144
    with open(meta_path, encoding="utf-8") as meta_file:
thomwolf's avatar
thomwolf committed
145
146
147
148
149
150
151
        metadata = json.load(meta_file)
    url = metadata['url']
    etag = metadata['etag']

    return url, etag


152
def cached_path(url_or_filename, cache_dir=None, force_download=False, proxies=None):
thomwolf's avatar
thomwolf committed
153
154
155
156
157
    """
    Given something that might be a URL (or might be a local path),
    determine which. If it's a URL, download the file and cache it, and
    return the path to the cached file. If it's already a local path,
    make sure the file exists and then return the path.
158
159
160
    Args:
        cache_dir: specify a cache directory to save the file to (overwrite the default cache dir).
        force_download: if True, re-dowload the file even if it's already cached in the cache dir.
thomwolf's avatar
thomwolf committed
161
162
    """
    if cache_dir is None:
163
        cache_dir = PYTORCH_TRANSFORMERS_CACHE
164
165
166
167
    if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
        url_or_filename = str(url_or_filename)
    if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
168
169
170
171
172

    parsed = urlparse(url_or_filename)

    if parsed.scheme in ('http', 'https', 's3'):
        # URL, so get it from the cache (downloading if necessary)
173
        return get_from_cache(url_or_filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
thomwolf's avatar
thomwolf committed
174
175
176
177
178
    elif os.path.exists(url_or_filename):
        # File, and it exists.
        return url_or_filename
    elif parsed.scheme == '':
        # File, but it doesn't exist.
thomwolf's avatar
thomwolf committed
179
        raise EnvironmentError("file {} not found".format(url_or_filename))
thomwolf's avatar
thomwolf committed
180
181
182
183
184
    else:
        # Something unknown
        raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))


thomwolf's avatar
thomwolf committed
185
def split_s3_path(url):
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194
195
196
197
    """Split a full s3 path into the bucket name and path."""
    parsed = urlparse(url)
    if not parsed.netloc or not parsed.path:
        raise ValueError("bad s3 path {}".format(url))
    bucket_name = parsed.netloc
    s3_path = parsed.path
    # Remove '/' at beginning of path.
    if s3_path.startswith("/"):
        s3_path = s3_path[1:]
    return bucket_name, s3_path


thomwolf's avatar
thomwolf committed
198
def s3_request(func):
thomwolf's avatar
thomwolf committed
199
200
201
202
203
204
    """
    Wrapper function for s3 requests in order to create more helpful error
    messages.
    """

    @wraps(func)
thomwolf's avatar
thomwolf committed
205
    def wrapper(url, *args, **kwargs):
thomwolf's avatar
thomwolf committed
206
207
208
209
        try:
            return func(url, *args, **kwargs)
        except ClientError as exc:
            if int(exc.response["Error"]["Code"]) == 404:
thomwolf's avatar
thomwolf committed
210
                raise EnvironmentError("file {} not found".format(url))
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
            else:
                raise

    return wrapper


@s3_request
218
def s3_etag(url, proxies=None):
thomwolf's avatar
thomwolf committed
219
    """Check ETag on S3 object."""
220
    s3_resource = boto3.resource("s3", config=Config(proxies=proxies))
thomwolf's avatar
thomwolf committed
221
222
223
224
225
226
    bucket_name, s3_path = split_s3_path(url)
    s3_object = s3_resource.Object(bucket_name, s3_path)
    return s3_object.e_tag


@s3_request
227
def s3_get(url, temp_file, proxies=None):
thomwolf's avatar
thomwolf committed
228
    """Pull a file directly from S3."""
229
    s3_resource = boto3.resource("s3", config=Config(proxies=proxies))
thomwolf's avatar
thomwolf committed
230
231
232
233
    bucket_name, s3_path = split_s3_path(url)
    s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)


234
235
def http_get(url, temp_file, proxies=None):
    req = requests.get(url, stream=True, proxies=proxies)
thomwolf's avatar
thomwolf committed
236
237
238
239
240
241
242
243
244
245
    content_length = req.headers.get('Content-Length')
    total = int(content_length) if content_length is not None else None
    progress = tqdm(unit="B", total=total)
    for chunk in req.iter_content(chunk_size=1024):
        if chunk: # filter out keep-alive new chunks
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()


246
def get_from_cache(url, cache_dir=None, force_download=False, proxies=None):
thomwolf's avatar
thomwolf committed
247
248
249
250
251
    """
    Given a URL, look for the corresponding dataset in the local cache.
    If it's not there, download it. Then return the path to the cached file.
    """
    if cache_dir is None:
252
        cache_dir = PYTORCH_TRANSFORMERS_CACHE
253
254
    if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)
255
256
    if sys.version_info[0] == 2 and not isinstance(cache_dir, str):
        cache_dir = str(cache_dir)
thomwolf's avatar
thomwolf committed
257

thomwolf's avatar
thomwolf committed
258
259
    if not os.path.exists(cache_dir):
        os.makedirs(cache_dir)
thomwolf's avatar
thomwolf committed
260
261
262

    # Get eTag to add to filename, if it exists.
    if url.startswith("s3://"):
263
        etag = s3_etag(url, proxies=proxies)
thomwolf's avatar
thomwolf committed
264
    else:
265
        try:
266
            response = requests.head(url, allow_redirects=True, proxies=proxies)
267
268
269
270
271
272
            if response.status_code != 200:
                etag = None
            else:
                etag = response.headers.get("ETag")
        except EnvironmentError:
            etag = None
thomwolf's avatar
thomwolf committed
273

274
275
    if sys.version_info[0] == 2 and etag is not None:
        etag = etag.decode('utf-8')
thomwolf's avatar
thomwolf committed
276
277
278
279
280
    filename = url_to_filename(url, etag)

    # get cache path to put the file
    cache_path = os.path.join(cache_dir, filename)

281
282
283
284
285
286
287
288
    # If we don't have a connection (etag is None) and can't identify the file
    # try to get the last downloaded one
    if not os.path.exists(cache_path) and etag is None:
        matching_files = fnmatch.filter(os.listdir(cache_dir), filename + '.*')
        matching_files = list(filter(lambda s: not s.endswith('.json'), matching_files))
        if matching_files:
            cache_path = os.path.join(cache_dir, matching_files[-1])

289
    if not os.path.exists(cache_path) or force_download:
thomwolf's avatar
thomwolf committed
290
291
292
        # Download to temporary file, then copy to cache dir once finished.
        # Otherwise you get corrupt cache entries if the download gets interrupted.
        with tempfile.NamedTemporaryFile() as temp_file:
293
            logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name)
thomwolf's avatar
thomwolf committed
294
295
296

            # GET file object
            if url.startswith("s3://"):
297
                s3_get(url, temp_file, proxies=proxies)
thomwolf's avatar
thomwolf committed
298
            else:
299
                http_get(url, temp_file, proxies=proxies)
thomwolf's avatar
thomwolf committed
300
301
302
303
304
305
306
307
308
309
310
311
312

            # we are copying the file before closing it, so flush to avoid truncation
            temp_file.flush()
            # shutil.copyfileobj() starts at the current position, so go to the start
            temp_file.seek(0)

            logger.info("copying %s to cache at %s", temp_file.name, cache_path)
            with open(cache_path, 'wb') as cache_file:
                shutil.copyfileobj(temp_file, cache_file)

            logger.info("creating metadata file for %s", cache_path)
            meta = {'url': url, 'etag': etag}
            meta_path = cache_path + '.json'
313
            with open(meta_path, 'w') as meta_file:
thomwolf's avatar
thomwolf committed
314
315
316
317
                output_string = json.dumps(meta)
                if sys.version_info[0] == 2 and isinstance(output_string, str):
                    output_string = unicode(output_string, 'utf-8')  # The beauty of python 2
                meta_file.write(output_string)
thomwolf's avatar
thomwolf committed
318
319
320
321

            logger.info("removing temp file %s", temp_file.name)

    return cache_path