simple_lm_finetuning.py 27.2 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
19
20

import argparse
thomwolf's avatar
thomwolf committed
21
22
23
24
import logging
import os
import random
from io import open
25
26
27

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
28
from torch.utils.data import DataLoader, Dataset, RandomSampler
29
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
30
from tqdm import tqdm, trange
31

thomwolf's avatar
thomwolf committed
32
33
34
from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
from pytorch_transformers.modeling_bert import BertForPreTraining
from pytorch_transformers.tokenization_bert import BertTokenizer
yzy5630's avatar
yzy5630 committed
35
from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt='%m/%d/%Y %H:%M:%S',
                    level=logging.INFO)
logger = logging.getLogger(__name__)


class BERTDataset(Dataset):
    def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True):
        self.vocab = tokenizer.vocab
        self.tokenizer = tokenizer
        self.seq_len = seq_len
        self.on_memory = on_memory
        self.corpus_lines = corpus_lines  # number of non-empty lines in input corpus
        self.corpus_path = corpus_path
        self.encoding = encoding
        self.current_doc = 0  # to avoid random sentence from same doc

        # for loading samples directly from file
        self.sample_counter = 0  # used to keep track of full epochs on file
        self.line_buffer = None  # keep second sentence of a pair in memory and use as first sentence in next pair

        # for loading samples in memory
        self.current_random_doc = 0
        self.num_docs = 0
61
        self.sample_to_doc = [] # map sample index to doc and line
62
63
64
65
66
67
68
69
70
71
72
73

        # load samples into memory
        if on_memory:
            self.all_docs = []
            doc = []
            self.corpus_lines = 0
            with open(corpus_path, "r", encoding=encoding) as f:
                for line in tqdm(f, desc="Loading Dataset", total=corpus_lines):
                    line = line.strip()
                    if line == "":
                        self.all_docs.append(doc)
                        doc = []
74
75
                        #remove last added sample because there won't be a subsequent line anymore in the doc
                        self.sample_to_doc.pop()
76
                    else:
77
78
79
80
                        #store as one sample
                        sample = {"doc_id": len(self.all_docs),
                                  "line": len(doc)}
                        self.sample_to_doc.append(sample)
81
                        doc.append(line)
82
83
                        self.corpus_lines = self.corpus_lines + 1

84
85
86
            # if last row in file is not empty
            if self.all_docs[-1] != doc:
                self.all_docs.append(doc)
87
                self.sample_to_doc.pop()
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

            self.num_docs = len(self.all_docs)

        # load samples later lazily from disk
        else:
            if self.corpus_lines is None:
                with open(corpus_path, "r", encoding=encoding) as f:
                    self.corpus_lines = 0
                    for line in tqdm(f, desc="Loading Dataset", total=corpus_lines):
                        if line.strip() == "":
                            self.num_docs += 1
                        else:
                            self.corpus_lines += 1

                    # if doc does not end with empty line
                    if line.strip() != "":
                        self.num_docs += 1

            self.file = open(corpus_path, "r", encoding=encoding)
            self.random_file = open(corpus_path, "r", encoding=encoding)

    def __len__(self):
        # last line of doc won't be used, because there's no "nextSentence". Additionally, we start counting at 0.
        return self.corpus_lines - self.num_docs - 1

    def __getitem__(self, item):
        cur_id = self.sample_counter
        self.sample_counter += 1
        if not self.on_memory:
            # after one epoch we start again from beginning of file
            if cur_id != 0 and (cur_id % len(self) == 0):
                self.file.close()
                self.file = open(self.corpus_path, "r", encoding=self.encoding)

        t1, t2, is_next_label = self.random_sent(item)

        # tokenize
        tokens_a = self.tokenizer.tokenize(t1)
        tokens_b = self.tokenizer.tokenize(t2)

        # combine to one sample
        cur_example = InputExample(guid=cur_id, tokens_a=tokens_a, tokens_b=tokens_b, is_next=is_next_label)

        # transform sample to features
        cur_features = convert_example_to_features(cur_example, self.seq_len, self.tokenizer)

134
135
136
137
138
        cur_tensors = (torch.tensor(cur_features.input_ids),
                       torch.tensor(cur_features.input_mask),
                       torch.tensor(cur_features.segment_ids),
                       torch.tensor(cur_features.lm_label_ids),
                       torch.tensor(cur_features.is_next))
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        return cur_tensors

    def random_sent(self, index):
        """
        Get one sample from corpus consisting of two sentences. With prob. 50% these are two subsequent sentences
        from one doc. With 50% the second sentence will be a random one from another doc.
        :param index: int, index of sample.
        :return: (str, str, int), sentence 1, sentence 2, isNextSentence Label
        """
        t1, t2 = self.get_corpus_line(index)
        if random.random() > 0.5:
            label = 0
        else:
            t2 = self.get_random_line()
            label = 1

        assert len(t1) > 0
        assert len(t2) > 0
        return t1, t2, label

    def get_corpus_line(self, item):
        """
        Get one sample from corpus consisting of a pair of two subsequent lines from the same doc.
        :param item: int, index of sample.
        :return: (str, str), two subsequent sentences from corpus
        """
        t1 = ""
        t2 = ""
        assert item < self.corpus_lines
        if self.on_memory:
170
171
172
            sample = self.sample_to_doc[item]
            t1 = self.all_docs[sample["doc_id"]][sample["line"]]
            t2 = self.all_docs[sample["doc_id"]][sample["line"]+1]
173
            # used later to avoid random nextSentence from same doc
174
            self.current_doc = sample["doc_id"]
175
176
177
178
179
            return t1, t2
        else:
            if self.line_buffer is None:
                # read first non-empty line of file
                while t1 == "" :
thomwolf's avatar
thomwolf committed
180
181
                    t1 = next(self.file).strip()
                    t2 = next(self.file).strip()
182
183
184
            else:
                # use t2 from previous iteration as new t1
                t1 = self.line_buffer
thomwolf's avatar
thomwolf committed
185
                t2 = next(self.file).strip()
186
187
                # skip empty rows that are used for separating documents and keep track of current doc id
                while t2 == "" or t1 == "":
thomwolf's avatar
thomwolf committed
188
189
                    t1 = next(self.file).strip()
                    t2 = next(self.file).strip()
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
                    self.current_doc = self.current_doc+1
            self.line_buffer = t2

        assert t1 != ""
        assert t2 != ""
        return t1, t2

    def get_random_line(self):
        """
        Get random line from another document for nextSentence task.
        :return: str, content of one line
        """
        # Similar to original tf repo: This outer loop should rarely go for more than one iteration for large
        # corpora. However, just to be careful, we try to make sure that
        # the random document is not the same as the document we're processing.
        for _ in range(10):
            if self.on_memory:
                rand_doc_idx = random.randint(0, len(self.all_docs)-1)
                rand_doc = self.all_docs[rand_doc_idx]
                line = rand_doc[random.randrange(len(rand_doc))]
            else:
                rand_index = random.randint(1, self.corpus_lines if self.corpus_lines < 1000 else 1000)
                #pick random line
                for _ in range(rand_index):
                    line = self.get_next_line()
            #check if our picked random line is really from another doc like we want it to be
            if self.current_random_doc != self.current_doc:
                break
        return line

    def get_next_line(self):
        """ Gets next line of random_file and starts over when reaching end of file"""
        try:
thomwolf's avatar
thomwolf committed
223
            line = next(self.random_file).strip()
224
225
226
            #keep track of which document we are currently looking at to later avoid having the same doc as t1
            if line == "":
                self.current_random_doc = self.current_random_doc + 1
thomwolf's avatar
thomwolf committed
227
                line = next(self.random_file).strip()
228
229
230
        except StopIteration:
            self.random_file.close()
            self.random_file = open(self.corpus_path, "r", encoding=self.encoding)
thomwolf's avatar
thomwolf committed
231
            line = next(self.random_file).strip()
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        return line


class InputExample(object):
    """A single training/test example for the language model."""

    def __init__(self, guid, tokens_a, tokens_b=None, is_next=None, lm_labels=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            tokens_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            tokens_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.tokens_a = tokens_a
        self.tokens_b = tokens_b
        self.is_next = is_next  # nextSentence
        self.lm_labels = lm_labels  # masked words for language model


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, is_next, lm_label_ids):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.is_next = is_next
        self.lm_label_ids = lm_label_ids


def random_word(tokens, tokenizer):
    """
    Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
    :param tokens: list of str, tokenized sentence.
    :param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
    :return: (list of str, list of int), masked tokens and related labels for LM prediction
    """
    output_label = []

    for i, token in enumerate(tokens):
        prob = random.random()
        # mask token with 15% probability
        if prob < 0.15:
            prob /= 0.15

            # 80% randomly change token to mask token
            if prob < 0.8:
                tokens[i] = "[MASK]"

            # 10% randomly change token to random token
            elif prob < 0.9:
                tokens[i] = random.choice(list(tokenizer.vocab.items()))[0]

            # -> rest 10% randomly keep current token

            # append current token to output (we will predict these later)
            try:
                output_label.append(tokenizer.vocab[token])
            except KeyError:
                # For unknown words (should not occur with BPE vocab)
                output_label.append(tokenizer.vocab["[UNK]"])
299
                logger.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token))
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        else:
            # no masking token (will be ignored by loss function later)
            output_label.append(-1)

    return tokens, output_label


def convert_example_to_features(example, max_seq_length, tokenizer):
    """
    Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
    IDs, LM labels, input_mask, CLS and SEP tokens etc.
    :param example: InputExample, containing sentence input as strings and is_next label
    :param max_seq_length: int, maximum length of sequence.
    :param tokenizer: Tokenizer
    :return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
    """
    tokens_a = example.tokens_a
    tokens_b = example.tokens_b
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)

323
324
    tokens_a, t1_label = random_word(tokens_a, tokenizer)
    tokens_b, t2_label = random_word(tokens_b, tokenizer)
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    # concatenate lm labels and account for CLS, SEP, SEP
    lm_label_ids = ([-1] + t1_label + [-1] + t2_label + [-1])

    # The convention in BERT is:
    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0   0   0   0  0     0 0
    #
    # Where "type_ids" are used to indicate whether this is the first
    # sequence or the second sequence. The embedding vectors for `type=0` and
    # `type=1` were learned during pre-training and are added to the wordpiece
    # embedding vector (and position vector). This is not *strictly* necessary
    # since the [SEP] token unambigiously separates the sequences, but it makes
    # it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is
    # used as as the "sentence vector". Note that this only makes sense because
    # the entire model is fine-tuned.
    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    assert len(tokens_b) > 0
    for token in tokens_b:
        tokens.append(token)
        segment_ids.append(1)
    tokens.append("[SEP]")
    segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        lm_label_ids.append(-1)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(lm_label_ids) == max_seq_length

    if example.guid < 5:
        logger.info("*** Example ***")
        logger.info("guid: %s" % (example.guid))
        logger.info("tokens: %s" % " ".join(
                [str(x) for x in tokens]))
        logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        logger.info(
                "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        logger.info("LM label: %s " % (lm_label_ids))
        logger.info("Is next sentence label: %s " % (example.is_next))

    features = InputFeatures(input_ids=input_ids,
                             input_mask=input_mask,
                             segment_ids=segment_ids,
                             lm_label_ids=lm_label_ids,
                             is_next=example.is_next)
    return features


def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
405
    parser.add_argument("--train_corpus",
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
yzy5630's avatar
yzy5630 committed
437
438
439
440
    parser.add_argument("--adam_epsilon", 
                        default=1e-8, 
                        type=float,
                        help="Epsilon for Adam optimizer.")
441
442
443
444
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
yzy5630's avatar
yzy5630 committed
445
446
447
448
    parser.add_argument("--warmup_steps", 
                        default=0, 
                        type=int,
                        help="Linear warmup over warmup_steps.")
449
450
451
452
453
454
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--on_memory",
                        action='store_true',
                        help="Whether to load train samples into memory or use disk")
455
456
457
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
474
475
476
477
                        type = float, default = 0,
                        help = "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                        "0 (default value): dynamic loss scaling.\n"
                        "Positive power of 2: static loss scaling value.\n")
478
479
480
481
482
483
484

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
485
        torch.cuda.set_device(args.local_rank)
486
487
488
489
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
490
491
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
492
493
494
495
496

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

497
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
498
499
500
501
502
503
504

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

505
506
    if not args.do_train:
        raise ValueError("Training is currently the only implemented execution option. Please set `do_train`.")
507
508
509

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
510
    if not os.path.exists(args.output_dir) and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
thomwolf's avatar
thomwolf committed
511
        os.makedirs(args.output_dir)
512

513
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
514
515

    #train_examples = None
516
    num_train_optimization_steps = None
517
    if args.do_train:
518
519
        print("Loading Train Dataset", args.train_corpus)
        train_dataset = BERTDataset(args.train_corpus, tokenizer, seq_len=args.max_seq_length,
520
                                    corpus_lines=None, on_memory=args.on_memory)
521
522
523
524
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
525
526
527
528
529
530
531

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
532
533
534
535
536
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
        model = DDP(model)
537
538
539
540
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
564
565

        else:
yzy5630's avatar
yzy5630 committed
566
567
            optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
        scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps)
568
569
570
571
572
573

    global_step = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
574
        logger.info("  Num steps = %d", num_train_optimization_steps)
575
576
577
578

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
thomwolf's avatar
thomwolf committed
579
            #TODO: check if this works with current data generator from disk that relies on next(file)
580
581
582
583
584
585
586
587
588
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
589
                batch = tuple(t.to(device) for t in batch)
590
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
yzy5630's avatar
yzy5630 committed
591
592
                outputs = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
                loss = outputs[0]
593
594
595
596
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
597
598
599
600
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
601
602
603
604
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
605
                    optimizer.step()
606
                    scheduler.step()  # Update learning rate schedule
607
                    optimizer.zero_grad()
608
609
                    global_step += 1

610
        # Save a trained model
611
        if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
612
            logger.info("** ** * Saving fine - tuned model ** ** * ")
wangfei's avatar
wangfei committed
613
614
            model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
            model_to_save.save_pretrained(args.output_dir)
yzy5630's avatar
yzy5630 committed
615
            tokenizer.save_pretrained(args.output_dir)
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()


def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)


if __name__ == "__main__":
thomwolf's avatar
thomwolf committed
641
    main()