test_tokenization_wav2vec2_phoneme.py 19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the Wav2Vec2Phoneme tokenizer."""
import json
import os
import unittest
from typing import Tuple

from transformers import Wav2Vec2PhonemeCTCTokenizer
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES
23
from transformers.models.wav2vec2_phoneme.tokenization_wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizerOutput
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from transformers.testing_utils import require_phonemizer

from .test_tokenization_common import TokenizerTesterMixin


@require_phonemizer
class Wav2Vec2PhonemeCTCTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = Wav2Vec2PhonemeCTCTokenizer
    test_rust_tokenizer = False

    def setUp(self):
        super().setUp()

        vocab = (
            "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː "
            "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː "
            "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 "
            "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ "
            "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ "
            "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ "
            'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '
            "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ "
            "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ "
            "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ "
            "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ "
            "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ "
            "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4"
        ).split(" ")
        vocab_tokens = dict(zip(vocab, range(len(vocab))))

        self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")

    # overwrite since phonemes require specific creation
    def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
        toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))]
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], do_phonemize=False), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
        if min_length is not None and len(toks) < min_length and len(toks) > 0:
            while len(toks) < min_length:
                toks = toks + toks
        # toks_str = [t[1] for t in toks]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
        return output_txt, output_ids

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return Wav2Vec2PhonemeCTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def test_tokenizer_add_new_tokens(self):
        tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")

        # check adding a single token
        tokenizer.add_tokens("xxx")
        token_ids = tokenizer("m xxx ɪ", do_phonemize=False).input_ids
        self.assertEqual(token_ids, [13, 392, 17])  # xxx should be last token

        tokenizer.add_tokens(["aaa", "bbb", "ccc"])
        token_ids = tokenizer("m aaa ɪ ccc", do_phonemize=False).input_ids
        self.assertEqual(token_ids, [13, 393, 17, 395])  # aaa and ccc should be after xxx and 2 after aaa

        token_ids = tokenizer("maɪ c", do_phonemize=False).input_ids
        self.assertEqual(token_ids, [3, 200])  # mai should be <unk> (=3)

    def test_phonemize(self):
        tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")

        input_text = "Hello how are you"
        phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
        self.assertEqual(phonemes, "h ə l oʊ h aʊ ɑːɹ j uː")

    def test_encode(self):
        tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")

        input_text = "Hello how are you"
        phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
        self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids)

    def test_encode_decode(self):
        tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
        input_text = "Hello how are you"
        phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")

        phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids)

        self.assertEqual(phonemes, phonemes_enc_dec)

    def test_decode(self):
        tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")

        sample_ids = [
            [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
            [24, 22, 5, 24, 22, 5, 77],
        ]
        tokens = tokenizer.decode(sample_ids[0])
        batch_tokens = tokenizer.batch_decode(sample_ids)
        self.assertEqual(tokens, batch_tokens[0])
        self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"])

    def test_phonemize_with_word_del(self):
        tokenizer = self.tokenizer_class.from_pretrained(
            "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
        )
        tokenizer.add_tokens("|")

        input_text = "Hello how are you"
        phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
        self.assertEqual(phonemes, "h ə l oʊ | h aʊ | ɑːɹ | j uː |")

    def test_encode_with_del(self):
        tokenizer = self.tokenizer_class.from_pretrained(
            "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
        )
        tokenizer.add_tokens("|")

        input_text = "Hello how are you"
        phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")
        self.assertEqual(tokenizer(input_text).input_ids, tokenizer(phonemes, do_phonemize=False).input_ids)

    def test_decode_with_del(self):
        tokenizer = self.tokenizer_class.from_pretrained(
            "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
        )
        tokenizer.add_tokens("|")

        # fmt: off
        sample_ids = [
            [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
            [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
        ]
        # fmt: on

        # decode with word_del_token filter
        tokens = tokenizer.decode(sample_ids[0])
        batch_tokens = tokenizer.batch_decode(sample_ids)
        self.assertEqual(tokens, batch_tokens[0])
        self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"])

        # decode with no word_del_token filter
        tokens = tokenizer.decode(sample_ids[0], filter_word_delimiter_token=False)
        batch_tokens = tokenizer.batch_decode(sample_ids, filter_word_delimiter_token=False)
        self.assertEqual(tokens, batch_tokens[0])
        self.assertEqual(batch_tokens, ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"])

    def test_encode_decode_with_del(self):
        tokenizer = self.tokenizer_class.from_pretrained(
            "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
        )
        tokenizer.add_tokens("|")

        input_text = "Hello how are you"
        phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")

        phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=False)

        self.assertEqual(phonemes, phonemes_enc_dec)

    def test_encode_decode_with_del_filter(self):
        tokenizer = self.tokenizer_class.from_pretrained(
            "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token="|"
        )
        tokenizer.add_tokens("|")

        input_text = "Hello how are you"
        phonemes = tokenizer.phonemize(input_text, phonemizer_lang="en-us")

        phonemes_enc_dec = tokenizer.decode(tokenizer(input_text).input_ids, filter_word_delimiter_token=True)

        self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip(), phonemes_enc_dec)

    def test_change_phonemizer_lang(self):
        tokenizer = self.tokenizer_class.from_pretrained(
            "facebook/wav2vec2-lv-60-espeak-cv-ft", word_delimiter_token=None
        )
        input_text = "Hello how are you"

        input_ids_en = tokenizer(input_text, phonemizer_lang="en-us").input_ids
        input_ids_fr = tokenizer(input_text, phonemizer_lang="fr-fr").input_ids

        self.assertNotEqual(input_ids_en, input_ids_fr)

        text_en = tokenizer.decode(input_ids_en)
        text_fr = tokenizer.decode(input_ids_fr)

        self.assertEqual(text_en, "h ə l oʊ h aʊ ɑːɹ j uː")
        self.assertEqual(text_fr, "ɛ l o h aʊ a ʁ j u")

    def test_case_insensitive(self):
        tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
        input_text_up = "Hello how Are you"
        input_text_low = "hello how are you"

        input_ids_up = tokenizer(input_text_up).input_ids
        input_ids_low = tokenizer(input_text_low).input_ids

        self.assertEqual(input_ids_up, input_ids_low)

    def test_tokenizer_decode_added_tokens(self):
        tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
        tokenizer.add_tokens(["!", "?"])
        tokenizer.add_special_tokens({"cls_token": "$$$"})

        # fmt: off
        sample_ids = [
            [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394],
            [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394],
        ]
        # fmt: on

        batch_tokens = tokenizer.batch_decode(sample_ids)
        self.assertEqual(batch_tokens, ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"])

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    @staticmethod
    def get_from_offsets(offsets, key):
        retrieved_list = [d[key] for d in offsets]
        return retrieved_list

    def test_offsets(self):
        tokenizer = self.get_tokenizer(word_delimiter_token="|")
        tokenizer.add_tokens("|")

        # fmt: off
        # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
        sample_ids = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
        # fmt: on

        outputs = tokenizer.decode(sample_ids, output_char_offsets=True, filter_word_delimiter_token=False)
        # check Wav2Vec2CTCTokenizerOutput keys for char
        self.assertTrue(len(outputs.keys()), 2)
        self.assertTrue("text" in outputs)
        self.assertTrue("char_offsets" in outputs)
        self.assertTrue(isinstance(outputs, Wav2Vec2PhonemeCTCTokenizerOutput))

        # check that order of chars is correct and identical for both outputs
        self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"], "char")), outputs.text)
        self.assertListEqual(
            self.get_from_offsets(outputs["char_offsets"], "char"), ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"]
        )

        # check that offsets are actually correct for char
        # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
        # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
        self.assertListEqual(
            self.get_from_offsets(outputs["char_offsets"], "start_offset"), [0, 1, 4, 7, 9, 11, 12, 15, 16]
        )
        self.assertListEqual(
            self.get_from_offsets(outputs["char_offsets"], "end_offset"), [1, 4, 6, 9, 10, 12, 15, 16, 17]
        )

    def test_offsets_batch(self):
        tokenizer = self.get_tokenizer(word_delimiter_token="|")

        def check_list_tuples_equal(outputs_batch, outputs_list):
            self.assertTrue(isinstance(outputs_batch, Wav2Vec2PhonemeCTCTokenizerOutput))
            self.assertTrue(isinstance(outputs_list[0], Wav2Vec2PhonemeCTCTokenizerOutput))

            # transform list to ModelOutput
            outputs_batch_2 = Wav2Vec2PhonemeCTCTokenizerOutput(
                {k: [d[k] for d in outputs_list] for k in outputs_list[0]}
            )

            self.assertListEqual(outputs_batch["text"], outputs_batch_2["text"])

            def recursive_check(list_or_dict_1, list_or_dict_2):
                if isinstance(list_or_dict_1, list):
                    [recursive_check(l1, l2) for l1, l2 in zip(list_or_dict_1, list_or_dict_2)]
                self.assertEqual(list_or_dict_1, list_or_dict_2)

            if "char_offsets" in outputs_batch:
                recursive_check(outputs_batch["char_offsets"], outputs_batch_2["char_offsets"])

        # fmt: off
        sample_ids = [
            [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
            [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
        ]
        # fmt: on

        # We assume that `decode` works as expected. All we will check now is
        # the output type is correct and the output is identical to `decode`

        # char
        outputs_char_batch = tokenizer.batch_decode(sample_ids, output_char_offsets=True)
        outputs_char = [tokenizer.decode(ids, output_char_offsets=True) for ids in sample_ids]
        check_list_tuples_equal(outputs_char_batch, outputs_char)

    @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes")
327
328
329
    def test_added_tokens_do_lower_case(self):
        pass

330
    @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes")
331
332
333
    def test_encode_decode_with_spaces(self):
        pass

334
    @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency")
335
336
337
    def test_internal_consistency(self):
        pass

338
    @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing")
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    def test_pretrained_model_lists(self):
        pass

    # overwrite common
    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)

                # We usually have added tokens from the start in tests because our vocab fixtures are
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-3], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-3], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-3], tokens[-4])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-3], tokenizer.pad_token_id)

    @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.")
    def test_tf_encode_plus_sent_to_model(self):
        pass

    @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.")
    def test_torch_encode_plus_sent_to_model(self):
        pass