"docs/vscode:/vscode.git/clone" did not exist on "30b4f771b0c515c18179f3e1ee0b4662b2606a95"
test_modeling_roberta.py 21.8 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import unittest
18
from copy import deepcopy
19

20
from transformers import RobertaConfig, is_torch_available
21
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
22

23
from .test_configuration_common import ConfigTester
24
from .test_generation_utils import GenerationTesterMixin
25
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
    import torch
30

31
    from transformers import (
32
        RobertaForCausalLM,
33
        RobertaForMaskedLM,
34
35
        RobertaForMultipleChoice,
        RobertaForQuestionAnswering,
36
37
        RobertaForSequenceClassification,
        RobertaForTokenClassification,
38
39
        RobertaModel,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    from transformers.models.roberta.modeling_roberta import (
41
42
43
        ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
        RobertaEmbeddings,
        create_position_ids_from_input_ids,
44
    )
45

46
47
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"

48

49
50
class RobertaModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
51
52
        self,
        parent,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
82
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
83
84
85
86
87
88
89
90
91
92
93
94
95

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

96
97
98
99
100
101
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return RobertaConfig(
102
103
104
105
106
107
108
109
110
111
112
113
114
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(
143
144
145
146
147
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
148
149
150
151
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

Stas Bekman's avatar
Stas Bekman committed
152
153
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = RobertaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = RobertaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = RobertaForCausalLM(config=config).to(torch_device).eval()

        # make sure that ids don't start with pad token
        mask = input_ids.ne(config.pad_token_id).long()
        input_ids = input_ids * mask

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)

        # make sure that ids don't start with pad token
        mask = next_tokens.ne(config.pad_token_id).long()
        next_tokens = next_tokens * mask
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

274
    def create_and_check_for_masked_lm(
275
276
277
278
279
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
280
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
281
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
282

283
    def create_and_check_for_token_classification(
284
285
286
287
288
289
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = RobertaForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
290
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
291
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
292

293
    def create_and_check_for_multiple_choice(
294
295
296
297
298
299
300
301
302
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = RobertaForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
303
        result = model(
304
305
306
307
308
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
309
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
310

311
    def create_and_check_for_question_answering(
312
313
314
315
316
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
317
        result = model(
318
319
320
321
322
323
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
324
325
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


342
@require_torch
343
class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
344

345
346
    all_model_classes = (
        (
347
            RobertaForCausalLM,
348
349
350
351
352
353
354
355
356
357
            RobertaForMaskedLM,
            RobertaModel,
            RobertaForSequenceClassification,
            RobertaForTokenClassification,
            RobertaForMultipleChoice,
            RobertaForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
358
    all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else ()
359
    test_sequence_classification_problem_types = True
360
361

    def setUp(self):
362
        self.model_tester = RobertaModelTester(self)
363
364
365
366
367
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

368
    def test_model(self):
369
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
370
371
        self.model_tester.create_and_check_model(*config_and_inputs)

372
373
374
375
376
377
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    def test_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)

    def test_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_model_as_decoder(
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
413

414
415
416
417
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

418
419
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
420
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
421

Lysandre's avatar
Lysandre committed
422
423
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
424
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
425
426
427

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
428
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
Lysandre's avatar
Lysandre committed
429
430
431

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
432
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
Lysandre's avatar
Lysandre committed
433

434
    @slow
435
    def test_model_from_pretrained(self):
436
        for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
437
            model = RobertaModel.from_pretrained(model_name)
438
439
            self.assertIsNotNone(model)

Dom Hudson's avatar
Dom Hudson committed
440
    def test_create_position_ids_respects_padding_index(self):
Lysandre's avatar
Lysandre committed
441
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
442
443
444
445
446
447
448
449
450
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = RobertaEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
451
452
453
        expected_positions = torch.as_tensor(
            [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
        )
Dom Hudson's avatar
Dom Hudson committed
454

Sam Shleifer's avatar
Sam Shleifer committed
455
        position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
456
        self.assertEqual(position_ids.shape, expected_positions.shape)
Dom Hudson's avatar
Dom Hudson committed
457
458
459
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
Lysandre's avatar
Lysandre committed
460
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
461
462
463
464
465
466
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
467
468
        embeddings = RobertaEmbeddings(config=config)

469
        inputs_embeds = torch.empty(2, 4, 30)
470
471
472
473
474
475
476
477
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
478
479
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
480
481


Lysandre Debut's avatar
Lysandre Debut committed
482
@require_torch
483
class RobertaModelIntegrationTest(TestCasePlus):
484
    @slow
485
    def test_inference_masked_lm(self):
486
        model = RobertaForMaskedLM.from_pretrained("roberta-base")
487

488
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
489
490
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 50265))
491
        self.assertEqual(output.shape, expected_shape)
492
        # compare the actual values for a slice.
493
494
        expected_slice = torch.tensor(
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
495
        )
496
497
498
499
500
501

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
502

503
    @slow
504
    def test_inference_no_head(self):
505
        model = RobertaModel.from_pretrained("roberta-base")
506

507
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
508
509
        output = model(input_ids)[0]
        # compare the actual values for a slice.
510
511
        expected_slice = torch.tensor(
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
512
        )
513
514
515
516
517
518

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
519

520
    @slow
521
    def test_inference_classification_head(self):
522
        model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
523

524
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
525
526
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 3))
527
        self.assertEqual(output.shape, expected_shape)
528
529
530
531
532
533
534
        expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
        # roberta.eval()
        # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()

        self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

    # XXX: this might be a candidate for common tests if we have many of those
    def test_lm_head_ignore_keys(self):
        keys_to_ignore_on_save_tied = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
        keys_to_ignore_on_save_untied = [r"lm_head.decoder.bias"]
        config = RobertaConfig.from_pretrained(ROBERTA_TINY)
        config_tied = deepcopy(config)
        config_tied.tie_word_embeddings = True
        config_untied = deepcopy(config)
        config_untied.tie_word_embeddings = False
        for cls in [RobertaForMaskedLM, RobertaForCausalLM]:
            model = cls(config_tied)
            self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_tied, cls)

            # the keys should be different when embeddings aren't tied
            model = cls(config_untied)
            self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_untied, cls)

            # test that saving works with updated ignore keys - just testing that it doesn't fail
            model.save_pretrained(self.get_auto_remove_tmp_dir())