test_modeling_longformer.py 29.5 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Iz Beltagy's avatar
Iz Beltagy committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from transformers import LongformerConfig, is_torch_available
20
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
Iz Beltagy's avatar
Iz Beltagy committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Iz Beltagy's avatar
Iz Beltagy committed
24
25
26
27


if is_torch_available():
    import torch
28

Iz Beltagy's avatar
Iz Beltagy committed
29
30
    from transformers import (
        LongformerForMaskedLM,
31
32
        LongformerForMultipleChoice,
        LongformerForQuestionAnswering,
33
        LongformerForSequenceClassification,
34
        LongformerForTokenClassification,
35
        LongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
36
        LongformerSelfAttention,
Iz Beltagy's avatar
Iz Beltagy committed
37
38
39
    )


40
class LongformerModelTester:
Iz Beltagy's avatar
Iz Beltagy committed
41
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
Iz Beltagy's avatar
Iz Beltagy committed
44
45
    ):
        self.parent = parent
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4
Iz Beltagy's avatar
Iz Beltagy committed
68
69
70
71
72

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window + 1` locations
73
74
        # (assuming no token with global attention, otherwise the last dimension of attentions
        # is x + self.attention_window + 1, where x is the number of tokens with global attention)
75
        self.key_length = self.attention_window + 2
Iz Beltagy's avatar
Iz Beltagy committed
76
77
78
79
80
81
82
83
84
85
86
87

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
88
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Iz Beltagy's avatar
Iz Beltagy committed
89
90
91
92
93
94
95
96
97
98
99
100
101

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

102
103
104
105
106
107
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return LongformerConfig(
Iz Beltagy's avatar
Iz Beltagy committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

122
123
124
125
126
127
128
129
    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
Sylvain Gugger's avatar
Sylvain Gugger committed
130
131
        output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
        output_without_mask = model(input_ids)["last_hidden_state"]
132
133
        self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4))

134
    def create_and_check_model(
Iz Beltagy's avatar
Iz Beltagy committed
135
136
137
138
139
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
142
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
143
144
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Iz Beltagy's avatar
Iz Beltagy committed
145

146
    def create_and_check_model_with_global_attention_mask(
147
148
149
150
151
152
153
154
155
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
        global_attention_mask = input_mask.clone()
        global_attention_mask[:, input_mask.shape[-1] // 2] = 0
        global_attention_mask = global_attention_mask.to(torch_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
156
        result = model(
157
158
159
160
161
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
164

Stas Bekman's avatar
Stas Bekman committed
165
166
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
167

168
    def create_and_check_for_masked_lm(
Iz Beltagy's avatar
Iz Beltagy committed
169
170
171
172
173
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
174
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
175
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Iz Beltagy's avatar
Iz Beltagy committed
176

177
    def create_and_check_for_question_answering(
178
179
180
181
182
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
183
        result = model(
184
185
            input_ids,
            attention_mask=input_mask,
186
            global_attention_mask=input_mask,
187
188
189
190
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
191
192
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
193

194
    def create_and_check_for_sequence_classification(
195
196
197
198
199
200
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
201
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
202
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
203

204
    def create_and_check_for_token_classification(
205
206
207
208
209
210
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
211
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
212
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
213

214
    def create_and_check_for_multiple_choice(
215
216
217
218
219
220
221
222
223
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = LongformerForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
224
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
225
        result = model(
226
227
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
228
            global_attention_mask=multiple_choice_input_mask,
229
230
231
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
232
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
233

Iz Beltagy's avatar
Iz Beltagy committed
234
235
236
237
238
239
240
241
242
243
244
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
245
        global_attention_mask = torch.zeros_like(input_ids)
246
247
        global_attention_mask[:, -1] = 1

248
249
250
251
252
253
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
Iz Beltagy's avatar
Iz Beltagy committed
254
255
        return config, inputs_dict

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
        # Make sure there are exactly three sep_token_id
        input_ids[:, -3:] = config.sep_token_id
        input_mask = torch.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

Iz Beltagy's avatar
Iz Beltagy committed
276
277
278
279
280
281

@require_torch
class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
    test_pruning = False  # pruning is not supported
    test_torchscript = False

282
283
284
285
    all_model_classes = (
        (
            LongformerModel,
            LongformerForMaskedLM,
286
287
288
289
            LongformerForSequenceClassification,
            LongformerForQuestionAnswering,
            LongformerForTokenClassification,
            LongformerForMultipleChoice,
290
291
292
293
        )
        if is_torch_available()
        else ()
    )
Iz Beltagy's avatar
Iz Beltagy committed
294
295
296
297
298
299
300
301

    def setUp(self):
        self.model_tester = LongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

302
    def test_model(self):
Iz Beltagy's avatar
Iz Beltagy committed
303
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
304
        self.model_tester.create_and_check_model(*config_and_inputs)
Iz Beltagy's avatar
Iz Beltagy committed
305

306
    def test_model_attention_mask_determinism(self):
307
308
309
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

310
    def test_model_global_attention_mask(self):
311
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
312
        self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
313

314
    def test_for_masked_lm(self):
Iz Beltagy's avatar
Iz Beltagy committed
315
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
316
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Iz Beltagy's avatar
Iz Beltagy committed
317

318
    def test_for_question_answering(self):
319
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
320
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
321

322
323
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
324
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
325

326
327
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
328
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
329

330
331
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
332
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
333

334
335
336
337
    def test_retain_grad_hidden_states_attentions(self):
        # longformer cannot keep gradients in attentions or hidden states
        return

Iz Beltagy's avatar
Iz Beltagy committed
338

Patrick von Platen's avatar
Patrick von Platen committed
339
@require_torch
340
341
@require_sentencepiece
@require_tokenizers
Iz Beltagy's avatar
Iz Beltagy committed
342
class LongformerModelIntegrationTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = hidden_states.reshape((1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = chunked_hidden_states.shape[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, 0, 4:],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )
        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, -1, :3],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(hidden_states.shape, (1, 8, 4))
        padding = (0, 0, 0, 1)

        padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
        self.assertTrue(padded_hidden_states.shape, (1, 8, 5))

        expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
        self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
        self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))

        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = torch.tensor(
            [0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
        )
        expected_slice_along_chunk = torch.tensor(
            [0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
        )

        self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
        self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
        self.assertTrue(chunked_hidden_states.shape, (1, 3, 4, 4))

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()

        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
        self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)

        hid_states_2 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
        self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)

        hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
        LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
        self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)

        hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
        LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
        self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)

    def test_layer_local_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.size()
487
488
489
490
491
492
493
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
        attention_mask[:, -2:] = -10000

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

Patrick von Platen's avatar
Patrick von Platen committed
494
        output_hidden_states = layer(
495
496
497
498
499
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
Patrick von Platen's avatar
Patrick von Platen committed
500
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 1],
                torch.tensor(
                    [0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

    def test_layer_global_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
521
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
522
523

        # create attn mask
524
525
526
527
528
529
530
531
        attention_mask[0, -2:] = 10000.0
        attention_mask[0, -1:] = -10000.0
        attention_mask[1, 1:] = 10000.0

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

Patrick von Platen's avatar
Patrick von Platen committed
532
        output_hidden_states = layer(
533
534
535
536
537
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
Patrick von Platen's avatar
Patrick von Platen committed
538
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))

        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 2],
                torch.tensor(
                    [-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                output_hidden_states[1, -2],
                torch.tensor(
                    [-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    def test_layer_attn_probs(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)

        # create attn mask
        attention_mask[0, -2:] = 10000.0
        attention_mask[0, -1:] = -10000.0
        attention_mask[1, 1:] = 10000.0

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

        output_hidden_states, local_attentions, global_attentions = layer(
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
Patrick von Platen's avatar
Patrick von Platen committed
589
            output_attentions=True,
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        )

        self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
        self.assertEqual(global_attentions.shape, (2, 2, 3, 4))

        # All tokens with global attention have weight 0 in local attentions.
        self.assertTrue(torch.all(local_attentions[0, 2:4, :, :] == 0))
        self.assertTrue(torch.all(local_attentions[1, 1:4, :, :] == 0))

        # The weight of all tokens with local attention must sum to 1.
        self.assertTrue(torch.all(torch.abs(global_attentions[0, :, :2, :].sum(dim=-1) - 1) < 1e-6))
        self.assertTrue(torch.all(torch.abs(global_attentions[1, :, :1, :].sum(dim=-1) - 1) < 1e-6))

        self.assertTrue(
            torch.allclose(
                local_attentions[0, 0, 0, :],
                torch.tensor(
                    [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                local_attentions[1, 0, 0, :],
                torch.tensor(
                    [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        # All the global attention weights must sum to 1.
        self.assertTrue(torch.all(torch.abs(global_attentions.sum(dim=-1) - 1) < 1e-6))

        self.assertTrue(
            torch.allclose(
                global_attentions[0, 0, 1, :],
                torch.tensor(
                    [0.2500, 0.2500, 0.2500, 0.2500],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                global_attentions[1, 0, 0, :],
                torch.tensor(
                    [0.2497, 0.2500, 0.2499, 0.2504],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

Iz Beltagy's avatar
Iz Beltagy committed
654
655
    @slow
    def test_inference_no_head(self):
656
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
657
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
658

659
660
661
        # 'Hello world!'
        input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device)
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
662

663
664
665
666
667
668
669
670
671
672
673
674
        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device)
        self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4))
        self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4))

    @slow
    def test_inference_no_head_long(self):
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
        model.to(torch_device)

Iz Beltagy's avatar
Iz Beltagy committed
675
        # 'Hello world! ' repeated 1000 times
676
677
678
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Iz Beltagy's avatar
Iz Beltagy committed
679
680

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
681
682
        global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device)
        global_attention_mask[:, [1, 4, 21]] = 1  # Set global attention on a few random positions
Iz Beltagy's avatar
Iz Beltagy committed
683

684
        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
Iz Beltagy's avatar
Iz Beltagy committed
685

686
687
        expected_output_sum = torch.tensor(74585.8594, device=torch_device)
        expected_output_mean = torch.tensor(0.0243, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
688
689
690
691
        self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
        self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))

    @slow
692
    def test_inference_masked_lm_long(self):
693
        model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
694
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
695
696

        # 'Hello world! ' repeated 1000 times
697
698
699
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Patrick von Platen's avatar
Patrick von Platen committed
700
        input_ids = input_ids.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
701

702
        loss, prediction_scores = model(input_ids, labels=input_ids).to_tuple()
Iz Beltagy's avatar
Iz Beltagy committed
703

704
705
706
        expected_loss = torch.tensor(0.0074, device=torch_device)
        expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
        expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
707
708
709
710

        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))