test_trainer_utils.py 25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
17
18
19
20
import unittest

import numpy as np

21
from transformers.data.data_collator import default_data_collator
22
from transformers.testing_utils import require_accelerate, require_torch
23
from transformers.trainer_utils import RemoveColumnsCollator, find_executable_batch_size
24
from transformers.utils import is_torch_available
25
26
27


if is_torch_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
28
    import torch
29
    from torch import nn
30
    from torch.utils.data import IterableDataset
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32

    from transformers.modeling_outputs import SequenceClassifierOutput
33
    from transformers.tokenization_utils_base import BatchEncoding
34
35
    from transformers.trainer_pt_utils import (
        DistributedLengthGroupedSampler,
36
        DistributedSamplerWithLoop,
37
        DistributedTensorGatherer,
38
        EvalLoopContainer,
39
        IterableDatasetShard,
40
41
        LabelSmoother,
        LengthGroupedSampler,
42
        SequentialDistributedSampler,
43
        ShardSampler,
44
        get_parameter_names,
45
46
        numpy_pad_and_concatenate,
        torch_pad_and_concatenate,
47
    )
48

49
    class TstLayer(nn.Module):
50
51
        def __init__(self, hidden_size):
            super().__init__()
52
53
54
55
56
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
57
58

        def forward(self, x):
59
60
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
61
62
            return self.ln2(x + h + self.bias)

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    class RandomIterableDataset(IterableDataset):
        # For testing, an iterable dataset of random length
        def __init__(self, p_stop=0.01, max_length=1000):
            self.p_stop = p_stop
            self.max_length = max_length
            self.generator = torch.Generator()

        def __iter__(self):
            count = 0
            stop = False
            while not stop and count < self.max_length:
                yield count
                count += 1
                number = torch.rand(1, generator=self.generator).item()
                stop = number < self.p_stop

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

@require_torch
class TrainerUtilsTest(unittest.TestCase):
    def test_distributed_tensor_gatherer(self):
        # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
        world_size = 4
        num_samples = 21
        input_indices = [
            [0, 1, 6, 7, 12, 13, 18, 19],
            [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
            [5, 11, 17, 2],
        ]

        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays(predictions[indices])
        result = gatherer.finalize()
        self.assertTrue(np.array_equal(result, predictions))

        # With nested tensors
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]])
        result = gatherer.finalize()
        self.assertTrue(isinstance(result, list))
105
        self.assertEqual(len(result), 2)
106
        self.assertTrue(isinstance(result[1], list))
107
        self.assertEqual(len(result[1]), 2)
108
109
110
        self.assertTrue(np.array_equal(result[0], predictions))
        self.assertTrue(np.array_equal(result[1][0], predictions))
        self.assertTrue(np.array_equal(result[1][1], predictions))
Sylvain Gugger's avatar
Sylvain Gugger committed
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_distributed_tensor_gatherer_different_shapes(self):
        # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
        world_size = 4
        num_samples = 21
        input_indices = [
            [0, 1, 6, 7, 12, 13, 18, 19],
            [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
            [5, 11, 17, 2],
        ]
        sequence_lengths = [8, 10, 13]

        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays(predictions[indices, :seq_length])
        result = gatherer.finalize()

        # Remove the extra samples added at the end for a round multiple of num processes.
        actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]]
        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length]))

        # With nested tensors
        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]])
        result = gatherer.finalize()

        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length]))
        self.assertTrue(np.array_equal(result[1], predictions))

        # Check if works if varying seq_length is second
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]])
        result = gatherer.finalize()

        self.assertTrue(np.array_equal(result[0], predictions))
        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length]))

Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
158
159
    def test_label_smoothing(self):
        epsilon = 0.1
        num_labels = 12
        random_logits = torch.randn(4, 5, num_labels)
        random_labels = torch.randint(0, num_labels, (4, 5))
160
        loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
161
        model_output = SequenceClassifierOutput(logits=random_logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
162
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
163
        log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
167
168
169
170
171
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean()
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))

        # With a few -100 labels
        random_labels[0, 1] = -100
        random_labels[2, 1] = -100
        random_labels[2, 3] = -100

172
        loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
173
        model_output = SequenceClassifierOutput(logits=random_logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
174
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
175
        log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
Sylvain Gugger's avatar
Sylvain Gugger committed
176
177
178
179
180
181
        # Mask the log probs with the -100 labels
        log_probs[0, 1] = 0.0
        log_probs[2, 1] = 0.0
        log_probs[2, 3] = 0.0
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17)
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
182
183
184
185
186
187
188

    def test_group_by_length(self):
        # Get some inputs of random lengths
        lengths = torch.randint(0, 25, (100,)).tolist()
        # Put one bigger than the others to check it ends up in first position
        lengths[32] = 50

189
        indices = list(LengthGroupedSampler(4, lengths=lengths))
190
191
192
        # The biggest element should be first
        self.assertEqual(lengths[indices[0]], 50)
        # The indices should be a permutation of range(100)
193
        self.assertEqual(sorted(indices), list(range(100)))
194

195
196
197
198
199
200
201
202
203
    def test_group_by_length_with_dict(self):
        # Get some inputs of random lengths
        data = []
        for _ in range(6):
            input_ids = torch.randint(0, 25, (100,)).tolist()
            data.append({"input_ids": input_ids})
        # Put one bigger than the others to check it ends up in first position
        data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()

204
        indices = list(LengthGroupedSampler(4, dataset=data))
205
206
207
        # The biggest element should be first
        self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
        # The indices should be a permutation of range(6)
208
        self.assertEqual(sorted(indices), list(range(6)))
209
210
211
212
213
214
215
216
217
218

    def test_group_by_length_with_batch_encoding(self):
        # Get some inputs of random lengths
        data = []
        for _ in range(6):
            input_ids = torch.randint(0, 25, (100,)).tolist()
            data.append(BatchEncoding({"input_ids": input_ids}))
        # Put one bigger than the others to check it ends up in first position
        data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()

219
        indices = list(LengthGroupedSampler(4, dataset=data))
220
221
222
        # The biggest element should be first
        self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
        # The indices should be a permutation of range(6)
223
        self.assertEqual(sorted(indices), list(range(6)))
224

225
226
227
228
229
230
    def test_distributed_length_grouped(self):
        # Get some inputs of random lengths
        lengths = torch.randint(0, 25, (100,)).tolist()
        # Put one bigger than the others to check it ends up in first position
        lengths[32] = 50

231
232
        indices_process_0 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=0, lengths=lengths))
        indices_process_1 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=1, lengths=lengths))
233
234
235
        # The biggest element should be first
        self.assertEqual(lengths[indices_process_0[0]], 50)
        # The indices should be a permutation of range(100)
236
        self.assertEqual(sorted(indices_process_0 + indices_process_1), list(range(100)))
237
238

    def test_get_parameter_names(self):
239
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
240
241
        # fmt: off
        self.assertEqual(
242
            get_parameter_names(model, [nn.LayerNorm]),
243
244
245
            ['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias']
        )
        # fmt: on
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    def test_distributed_sampler_with_loop(self):
        batch_size = 16
        for length in [23, 64, 123]:
            dataset = list(range(length))
            shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0)
            shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1)

            # Set seeds
            shard1.set_epoch(0)
            shard2.set_epoch(0)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            self.assertTrue(len(samples1) % batch_size == 0)
            self.assertTrue(len(samples2) % batch_size == 0)

            total = []
            for sample1, sample2 in zip(samples1, samples2):
                total += [sample1, sample2]

            self.assertEqual(set(total[:length]), set(dataset))
            self.assertEqual(set(total[length:]), set(total[: (len(total) - length)]))
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    def test_sequential_distributed_sampler(self):
        batch_size = 16
        for length in [23, 64, 123]:
            dataset = list(range(length))
            shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0)
            shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            total = samples1 + samples2

            self.assertListEqual(total[:length], dataset)
            self.assertListEqual(total[length:], dataset[: (len(total) - length)])

            # With a batch_size passed
            shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size)
            shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            self.assertTrue(len(samples1) % batch_size == 0)
            self.assertTrue(len(samples2) % batch_size == 0)

            total = samples1 + samples2

            self.assertListEqual(total[:length], dataset)
            self.assertListEqual(total[length:], dataset[: (len(total) - length)])
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

    def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0):
        # Set the seed for the base dataset to get the proper reference.
        dataset.generator.manual_seed(epoch)
        reference = list(dataset)

        shards = [
            IterableDatasetShard(
                dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
            )
            for i in range(num_processes)
        ]
        for shard in shards:
            shard.set_epoch(epoch)
        shard_lists = [list(shard) for shard in shards]

        for shard in shard_lists:
            # All shards have a number of samples that is a round multiple of batch size
            self.assertTrue(len(shard) % batch_size == 0)
            # All shards have the same number of samples
            self.assertEqual(len(shard), len(shard_lists[0]))

325
326
327
328
        for shard in shards:
            # All shards know the total number of samples
            self.assertEqual(shard.num_examples, len(reference))

329
330
331
332
333
334
335
336
337
338
339
340
        observed = []
        for idx in range(0, len(shard_lists[0]), batch_size):
            for shard in shard_lists:
                observed += shard[idx : idx + batch_size]

        # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
        # batch_size
        if not drop_last:
            while len(reference) < len(observed):
                reference += reference
        self.assertListEqual(observed, reference[: len(observed)])

341
342
343
344
345
346
347
348
349
350
351
352
353
        # Check equivalence between IterableDataset and ShardSampler
        dataset.generator.manual_seed(epoch)
        reference = list(dataset)

        sampler_shards = [
            ShardSampler(
                reference, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
            )
            for i in range(num_processes)
        ]
        for shard, sampler_shard in zip(shard_lists, sampler_shards):
            self.assertListEqual(shard, list(sampler_shard))

354
355
356
357
    def test_iterable_dataset_shard(self):
        dataset = RandomIterableDataset()

        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0)
358
        self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=2, epoch=0)
359
360

        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42)
361
362
        self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=3, epoch=42)

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    def test_iterable_dataset_shard_with_length(self):
        sampler_shards = [
            IterableDatasetShard(list(range(100)), batch_size=4, drop_last=True, num_processes=2, process_index=i)
            for i in range(2)
        ]

        # Build expected shards: each process will have batches of size 4 until there is not enough elements to
        # form two full batches (so we stop at 96 = (100 // (4 * 2)) * 4)
        expected_shards = [[], []]
        current_shard = 0
        for i in range(0, 96, 4):
            expected_shards[current_shard].extend(list(range(i, i + 4)))
            current_shard = 1 - current_shard

        self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
        self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])

        sampler_shards = [
            IterableDatasetShard(list(range(100)), batch_size=4, drop_last=False, num_processes=2, process_index=i)
            for i in range(2)
        ]
        # When drop_last=False, we get two last full batches by looping back to the beginning.
        expected_shards[0].extend(list(range(96, 100)))
        expected_shards[1].extend(list(range(0, 4)))

        self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
        self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    def check_shard_sampler(self, dataset, batch_size, drop_last, num_processes=2):
        shards = [
            ShardSampler(
                dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
            )
            for i in range(num_processes)
        ]
        shard_lists = [list(shard) for shard in shards]

        for shard in shard_lists:
            # All shards have a number of samples that is a round multiple of batch size
            self.assertTrue(len(shard) % batch_size == 0)
            # All shards have the same number of samples
            self.assertEqual(len(shard), len(shard_lists[0]))

        observed = []
        for idx in range(0, len(shard_lists[0]), batch_size):
            for shard in shard_lists:
                observed += shard[idx : idx + batch_size]

        # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
        # batch_size
        reference = copy.copy(dataset)
        if not drop_last:
            while len(reference) < len(observed):
                reference += reference
        self.assertListEqual(observed, reference[: len(observed)])

    def test_shard_sampler(self):
        for n_elements in [64, 123]:
            dataset = list(range(n_elements))

            self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=2)
            self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=2)

            self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=3)
            self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=3)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

    @require_accelerate
    def test_executable_batch_size(self):
        batch_sizes = []

        @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=True)
        def mock_training_loop_function(batch_size):
            nonlocal batch_sizes
            batch_sizes.append(batch_size)
            if batch_size > 16:
                raise RuntimeError("CUDA out of memory.")

        mock_training_loop_function()
        self.assertEqual(batch_sizes, [64, 32, 16])

    @require_accelerate
    def test_executable_batch_size_no_search(self):
        batch_sizes = []

        @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
        def mock_training_loop_function(batch_size):
            nonlocal batch_sizes
            batch_sizes.append(batch_size)

        mock_training_loop_function()
        self.assertEqual(batch_sizes, [64])

    @require_accelerate
    def test_executable_batch_size_with_error(self):
        @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
        def mock_training_loop_function(batch_size):
            raise RuntimeError("CUDA out of memory.")

        with self.assertRaises(RuntimeError) as cm:
            mock_training_loop_function()
            self.assertEqual("CUDA out of memory", cm.args[0])
464

465
466
467
468
469
470
471
472
473
474
475
476
    def test_pad_and_concatenate_with_1d(self):
        """Tests whether pad_and_concatenate works with scalars."""
        array1 = 1.0
        array2 = 2.0
        result = numpy_pad_and_concatenate(array1, array2)
        self.assertTrue(np.array_equal(np.array([1.0, 2.0]), result))

        tensor1 = torch.tensor(1.0)
        tensor2 = torch.tensor(2.0)
        result = torch_pad_and_concatenate(tensor1, tensor2)
        self.assertTrue(torch.equal(result, torch.Tensor([1.0, 2.0])))

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    def test_remove_columns_collator(self):
        class MockLogger:
            def __init__(self) -> None:
                self.called = 0

            def info(self, msg):
                self.called += 1
                self.last_msg = msg

        data_batch = [
            {"col1": 1, "col2": 2, "col3": 3},
            {"col1": 1, "col2": 2, "col3": 3},
        ]
        logger = MockLogger()
        remove_columns_collator = RemoveColumnsCollator(
            default_data_collator, ["col1", "col2"], logger, "model", "training"
        )

        self.assertNotIn("col3", remove_columns_collator(data_batch))
        # check that the logging message is printed out only once
        remove_columns_collator(data_batch)
        remove_columns_collator(data_batch)
        self.assertEqual(logger.called, 1)
        self.assertIn("col3", logger.last_msg)
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

    def test_eval_loop_container(self):
        batch_1 = [
            torch.ones([8, 5]),
            {"loss": torch.tensor(1.0)},
            (torch.ones([8, 2, 3]), torch.ones([8, 2])),
        ]
        batch_2 = [
            torch.ones([4, 5]),
            {"loss": torch.tensor(2.0)},
            (torch.ones([4, 2, 3]), torch.ones([4, 6])),
        ]

        concat_container = EvalLoopContainer(do_nested_concat=True, padding_index=-100)
        concat_container.add(batch_1)
        concat_container.add(batch_2)
        concat_container.to_cpu_and_numpy()
        arrays = concat_container.get_arrays()

        # Test two nested batches concatenation
        self.assertIsInstance(arrays, list)
        self.assertEqual(len(arrays), 3)
        self.assertIsInstance(arrays[0], np.ndarray)
        self.assertEqual(arrays[0].shape, (12, 5))
        self.assertIsInstance(arrays[1], dict)
        self.assertIsInstance(arrays[1]["loss"], np.ndarray)
        self.assertEqual(arrays[1]["loss"].shape, (2,))
        self.assertTrue(np.allclose(arrays[1]["loss"], np.array([1.0, 2.0])))
        self.assertIsInstance(arrays[2], tuple)
        self.assertEqual(len(arrays[2]), 2)
        self.assertEqual(arrays[2][0].shape, (12, 2, 3))
        self.assertEqual(arrays[2][1].shape, (12, 6))
        # check that first batch padded with padding index -100 after concatenation
        self.assertEqual(arrays[2][1][0][2], -100)

        # Test two batches with no concatenation
        list_container = EvalLoopContainer(do_nested_concat=False)
        list_container.add(batch_1)
        list_container.add(batch_2)
        list_container.to_cpu_and_numpy()
        arrays = list_container.get_arrays()

        self.assertEqual(len(arrays), 2)
        self.assertIsInstance(arrays, list)
        np_batch_1, np_batch_2 = arrays

        self.assertIsInstance(np_batch_1, list)
        self.assertEqual(len(np_batch_1), 3)
        self.assertIsInstance(np_batch_1[0], np.ndarray)
        self.assertIsInstance(np_batch_1[1], dict)
        self.assertIsInstance(np_batch_1[2], tuple)
        self.assertEqual(np_batch_1[0].shape, (8, 5))
        self.assertEqual(np_batch_1[1]["loss"].shape, ())
        self.assertEqual(np_batch_1[2][0].shape, (8, 2, 3))
        self.assertEqual(np_batch_1[2][1].shape, (8, 2))

        self.assertIsInstance(np_batch_2, list)
        self.assertEqual(len(np_batch_2), 3)
        self.assertIsInstance(np_batch_2[0], np.ndarray)
        self.assertIsInstance(np_batch_2[1], dict)
        self.assertIsInstance(np_batch_2[2], tuple)
        self.assertEqual(np_batch_2[0].shape, (4, 5))
        self.assertEqual(np_batch_2[1]["loss"].shape, ())
        self.assertEqual(np_batch_2[2][0].shape, (4, 2, 3))
        self.assertEqual(np_batch_2[2][1].shape, (4, 6))

        # Test no batches
        none_arr = EvalLoopContainer(do_nested_concat=True, padding_index=-100).get_arrays()
        self.assertIsNone(none_arr)

        none_arr = EvalLoopContainer(do_nested_concat=False).get_arrays()
        self.assertIsNone(none_arr)

        # Test one batch
        concat_container = EvalLoopContainer(do_nested_concat=True, padding_index=-100)
        concat_container.add(batch_1)
        arrays = concat_container.get_arrays()
        self.assertIsInstance(arrays, list)
        self.assertEqual(len(arrays), 3)
        self.assertIsInstance(arrays[0], np.ndarray)
        self.assertEqual(arrays[0].shape, (8, 5))
        self.assertIsInstance(arrays[1], dict)
        self.assertIsInstance(arrays[1]["loss"], np.ndarray)
        self.assertEqual(arrays[1]["loss"].shape, ())
        self.assertTrue(np.allclose(arrays[1]["loss"], np.array([1.0])))
        self.assertIsInstance(arrays[2], tuple)
        self.assertEqual(len(arrays[2]), 2)
        self.assertEqual(arrays[2][0].shape, (8, 2, 3))
        self.assertEqual(arrays[2][1].shape, (8, 2))