fsmt-make-tiny-model.py 1.56 KB
Newer Older
1
2
3
#!/usr/bin/env python
# coding: utf-8

4
5
6
7
8
9
10
11
12
13
14
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
# This gives ~3MB in total for all files.
#
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
#
#
# It will be used then as "stas/tiny-wmt19-en-de"
15

16
# Build
17
18
19
20
21
22
23
24
25
26
27
28
29
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
mname = "facebook/wmt19-en-de"
tokenizer = FSMTTokenizer.from_pretrained(mname)
# get the correct vocab sizes, etc. from the master model
config = FSMTConfig.from_pretrained(mname)
config.update(dict(
    d_model=4,
    encoder_layers=1, decoder_layers=1,
    encoder_ffn_dim=4, decoder_ffn_dim=4,
    encoder_attention_heads=1, decoder_attention_heads=1))

tiny_model = FSMTForConditionalGeneration(config)
print(f"num of params {tiny_model.num_parameters()}")
30
31

# Test
32
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"], return_tensors="pt")
33
outputs = tiny_model(**batch)
34

35
36
print("test output:", len(outputs.logits[0]))

37
38
39
40
41
42
# Save
mname_tiny = "tiny-wmt19-en-de"
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)

43
44
print(f"Generated {mname_tiny}")

45
46
# Upload
# transformers-cli upload tiny-wmt19-en-de