test_tokenization_common.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

thomwolf's avatar
thomwolf committed
17
import os
18
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import shutil
20
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
21

22
23
from tests.utils import require_tf, require_torch

24

25
class TokenizerTesterMixin:
26

27
    tokenizer_class = None
Anthony MOI's avatar
Anthony MOI committed
28
    test_rust_tokenizer = False
29

30
31
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
32

33
34
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
35

36
37
    def get_tokenizer(self, **kwargs):
        raise NotImplementedError
38

Anthony MOI's avatar
Anthony MOI committed
39
40
    def get_rust_tokenizer(self, **kwargs):
        raise NotImplementedError
41

42
43
    def get_input_output_texts(self):
        raise NotImplementedError
thomwolf's avatar
thomwolf committed
44

45
46
47
48
49
50
51
52
53
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
        # to the concatenated encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
            for i in range(len(batch_encode_plus_sequences))
        ]

54
55
56
57
58
59
60
61
62
63
64
65
66
67
    def test_tokenizers_common_properties(self):
        tokenizer = self.get_tokenizer()
        attributes_list = [
            "bos_token",
            "eos_token",
            "unk_token",
            "sep_token",
            "pad_token",
            "cls_token",
            "mask_token",
        ]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
            self.assertTrue(hasattr(tokenizer, attr + "_id"))
68

69
70
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))
71

72
73
74
        attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
75

76
77
78
79
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizer = self.get_tokenizer()
        self.assertNotEqual(tokenizer.max_len, 42)
80

81
82
        # Now let's start the test
        tokenizer = self.get_tokenizer(max_len=42)
thomwolf's avatar
thomwolf committed
83

84
        before_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
85

86
        with tempfile.TemporaryDirectory() as tmpdirname:
87
88
            tokenizer.save_pretrained(tmpdirname)
            tokenizer = self.tokenizer_class.from_pretrained(tmpdirname)
89

90
91
            after_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
            self.assertListEqual(before_tokens, after_tokens)
92

93
94
95
            self.assertEqual(tokenizer.max_len, 42)
            tokenizer = self.tokenizer_class.from_pretrained(tmpdirname, max_len=43)
            self.assertEqual(tokenizer.max_len, 43)
96

97
98
99
    def test_pickle_tokenizer(self):
        tokenizer = self.get_tokenizer()
        self.assertIsNotNone(tokenizer)
100

101
102
        text = "Munich and Berlin are nice cities"
        subwords = tokenizer.tokenize(text)
103

104
        with tempfile.TemporaryDirectory() as tmpdirname:
105

106
107
108
            filename = os.path.join(tmpdirname, "tokenizer.bin")
            with open(filename, "wb") as handle:
                pickle.dump(tokenizer, handle)
109

110
111
            with open(filename, "rb") as handle:
                tokenizer_new = pickle.load(handle)
112

113
        subwords_loaded = tokenizer_new.tokenize(text)
114

115
        self.assertListEqual(subwords, subwords_loaded)
116

117
118
    def test_added_tokens_do_lower_case(self):
        tokenizer = self.get_tokenizer(do_lower_case=True)
119

120
        special_token = tokenizer.all_special_tokens[0]
121

122
123
        text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
        text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
124

125
        toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
126

127
128
129
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 2)
130

131
132
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
133

134
135
136
        self.assertEqual(len(toks), len(toks2))
        self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
        self.assertListEqual(toks, toks2)
137

138
139
140
        # Check that none of the special tokens are lowercased
        sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
        tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
Lysandre's avatar
Lysandre committed
141

142
143
        for special_token in tokenizer.all_special_tokens:
            self.assertTrue(special_token in tokenized_sequence)
Lysandre's avatar
Lysandre committed
144

145
        tokenizer = self.get_tokenizer(do_lower_case=False)
146

147
148
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 4)
149

150
151
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
152

153
154
155
        self.assertEqual(len(toks), len(toks2))  # Length should still be the same
        self.assertNotEqual(len(toks), len(toks0))
        self.assertNotEqual(toks[1], toks2[1])  # But at least the first non-special tokens should differ
156

157
158
    def test_add_tokens_tokenizer(self):
        tokenizer = self.get_tokenizer()
159

160
161
        vocab_size = tokenizer.vocab_size
        all_size = len(tokenizer)
162

163
164
        self.assertNotEqual(vocab_size, 0)
        self.assertEqual(vocab_size, all_size)
165

166
167
168
169
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
        added_toks = tokenizer.add_tokens(new_toks)
        vocab_size_2 = tokenizer.vocab_size
        all_size_2 = len(tokenizer)
170

171
172
173
174
        self.assertNotEqual(vocab_size_2, 0)
        self.assertEqual(vocab_size, vocab_size_2)
        self.assertEqual(added_toks, len(new_toks))
        self.assertEqual(all_size_2, all_size + len(new_toks))
175

176
        tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
thomwolf's avatar
thomwolf committed
177

178
179
180
        self.assertGreaterEqual(len(tokens), 4)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
181

182
183
184
185
        new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
        added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
        vocab_size_3 = tokenizer.vocab_size
        all_size_3 = len(tokenizer)
186

187
188
189
190
        self.assertNotEqual(vocab_size_3, 0)
        self.assertEqual(vocab_size, vocab_size_3)
        self.assertEqual(added_toks_2, len(new_toks_2))
        self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
191

192
193
194
        tokens = tokenizer.encode(
            ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
        )
195

196
197
198
199
200
201
202
        self.assertGreaterEqual(len(tokens), 6)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[0], tokens[1])
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokens[-3])
        self.assertEqual(tokens[0], tokenizer.eos_token_id)
        self.assertEqual(tokens[-2], tokenizer.pad_token_id)
203

204
205
206
    def test_add_special_tokens(self):
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
207

208
        special_token = "[SPECIAL TOKEN]"
209

210
211
212
        tokenizer.add_special_tokens({"cls_token": special_token})
        encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
        assert len(encoded_special_token) == 1
213

214
215
        text = " ".join([input_text, special_token, output_text])
        encoded = tokenizer.encode(text, add_special_tokens=False)
216

217
        input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
218
        output_encoded = tokenizer.encode(" " + output_text, add_special_tokens=False)
219
220
        special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
        assert encoded == input_encoded + special_token_id + output_encoded
221

222
223
        decoded = tokenizer.decode(encoded, skip_special_tokens=True)
        assert special_token not in decoded
224

225
226
227
    def test_required_methods_tokenizer(self):
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
228

229
230
231
232
        tokens = tokenizer.tokenize(input_text)
        ids = tokenizer.convert_tokens_to_ids(tokens)
        ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
        self.assertListEqual(ids, ids_2)
233

234
235
        tokens_2 = tokenizer.convert_ids_to_tokens(ids)
        text_2 = tokenizer.decode(ids)
236

237
        self.assertEqual(text_2, output_text)
238

239
        self.assertNotEqual(len(tokens_2), 0)
240
        self.assertIsInstance(text_2, str)
241

242
243
    def test_encode_decode_with_spaces(self):
        tokenizer = self.get_tokenizer()
LysandreJik's avatar
LysandreJik committed
244

245
246
247
248
249
250
        new_toks = ["[ABC]", "[DEF]", "GHI IHG"]
        tokenizer.add_tokens(new_toks)
        input = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
        encoded = tokenizer.encode(input, add_special_tokens=False)
        decoded = tokenizer.decode(encoded)
        self.assertEqual(decoded, input)
251

252
253
254
255
256
    def test_pretrained_model_lists(self):
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
257

258
259
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
260

261
262
    def test_mask_output(self):
        tokenizer = self.get_tokenizer()
263

264
        if tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer":
265
266
            seq_0 = "Test this method."
            seq_1 = "With these inputs."
267
268
269
270
271
272
273
274
275
276
277
            information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
            sequences, mask = information["input_ids"], information["token_type_ids"]
            self.assertEqual(len(sequences), len(mask))

    def test_number_of_added_tokens(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "Test this method."
        seq_1 = "With these inputs."

        sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
278
        attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

        # Method is implemented (e.g. not GPT-2)
        if len(attached_sequences) != 2:
            self.assertEqual(tokenizer.num_added_tokens(pair=True), len(attached_sequences) - len(sequences))

    def test_maximum_encoding_length_single_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        stride = 2

        sequence = tokenizer.encode(seq_0, add_special_tokens=False)
        num_added_tokens = tokenizer.num_added_tokens()
        total_length = len(sequence) + num_added_tokens
        information = tokenizer.encode_plus(
294
295
296
297
298
299
            seq_0,
            max_length=total_length - 2,
            add_special_tokens=True,
            stride=stride,
            return_overflowing_tokens=True,
            add_prefix_space=False,
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), total_length - 2)
        self.assertEqual(truncated_sequence, tokenizer.build_inputs_with_special_tokens(sequence[:-2]))

    def test_maximum_encoding_length_pair_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        seq_1 = "This is another sentence to be encoded."
        stride = 2

        sequence_0_no_special_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
        sequence_1_no_special_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

320
        sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
321
322
323
324
325
326
327
328
329
330
331
332
        truncated_second_sequence = tokenizer.build_inputs_with_special_tokens(
            tokenizer.encode(seq_0, add_special_tokens=False), tokenizer.encode(seq_1, add_special_tokens=False)[:-2],
        )

        information = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_second",
            return_overflowing_tokens=True,
333
            add_prefix_space=False,
334
335
336
337
338
339
340
341
342
        )
        information_first_truncated = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_first",
            return_overflowing_tokens=True,
343
            add_prefix_space=False,
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]
        overflowing_tokens_first_truncated = information_first_truncated["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence_1_no_special_tokens[-(2 + stride) :])
        self.assertEqual(overflowing_tokens_first_truncated, sequence_0_no_special_tokens[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), len(sequence) - 2)
        self.assertEqual(truncated_sequence, truncated_second_sequence)

    def test_encode_input_type(self):
        tokenizer = self.get_tokenizer()

        sequence = "Let's encode this sequence"

        tokens = tokenizer.tokenize(sequence)
        input_ids = tokenizer.convert_tokens_to_ids(tokens)
363
        formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
364
365
366
367

        self.assertEqual(tokenizer.encode(tokens, add_special_tokens=True), formatted_input)
        self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    def test_swap_special_token(self):
        tokenizer = self.get_tokenizer()

        mask = "<mask>"
        sequence = "Encode this sequence"
        sequence_masked_0 = "Encode <mask> sequence"
        sequence_masked_1 = "<mask> this sequence"

        # Add tokens so that masked token isn't split
        tokenizer.add_tokens(sequence.split())
        tokenizer.add_special_tokens({"mask_token": mask})
        mask_ind = tokenizer.convert_tokens_to_ids(mask)
        encoded = tokenizer.encode(sequence, add_special_tokens=False)

        # Test first masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

        # Test second masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

396
397
398
399
400
401
402
403
404
    def test_special_tokens_mask(self):
        tokenizer = self.get_tokenizer()

        sequence_0 = "Encode this."
        sequence_1 = "This one too please."

        # Testing single inputs
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence_dict = tokenizer.encode_plus(
405
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
406
407
408
409
410
411
412
413
414
415
416
417
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

        filtered_sequence = [
            (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
        ]
        filtered_sequence = [x for x in filtered_sequence if x is not None]
        self.assertEqual(encoded_sequence, filtered_sequence)

        # Testing inputs pairs
418
419
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
420
        encoded_sequence_dict = tokenizer.encode_plus(
421
            sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

        filtered_sequence = [
            (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
        ]
        filtered_sequence = [x for x in filtered_sequence if x is not None]
        self.assertEqual(encoded_sequence, filtered_sequence)

        # Testing with already existing special tokens
        if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id:
            tokenizer.add_special_tokens({"cls_token": "</s>", "sep_token": "<s>"})
        encoded_sequence_dict = tokenizer.encode_plus(
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"]
        special_tokens_mask = tokenizer.get_special_tokens_mask(
            encoded_sequence_w_special, already_has_special_tokens=True
        )
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
        self.assertEqual(special_tokens_mask_orig, special_tokens_mask)

    def test_padding_to_max_length(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
        padding_size = 10
452
453
454
455

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        padding_idx = tokenizer.pad_token_id

        # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "right"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

        # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "left"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

        # RIGHT & LEFT PADDING - Check that nothing is done when a maximum length is not specified
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)

        tokenizer.padding_side = "right"
        padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_right_length = len(padded_sequence_right)

        tokenizer.padding_side = "left"
        padded_sequence_left = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_left_length = len(padded_sequence_left)

        assert sequence_length == padded_sequence_right_length
        assert encoded_sequence == padded_sequence_right
        assert sequence_length == padded_sequence_left_length
        assert encoded_sequence == padded_sequence_left

    def test_encode_plus_with_padding(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
497
498
499
500

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

501
502
503
504
505
506
507
508
509
510
511
512
513
        padding_size = 10
        padding_idx = tokenizer.pad_token_id
        token_type_padding_idx = tokenizer.pad_token_type_id

        encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
        input_ids = encoded_sequence["input_ids"]
        token_type_ids = encoded_sequence["token_type_ids"]
        attention_mask = encoded_sequence["attention_mask"]
        special_tokens_mask = encoded_sequence["special_tokens_mask"]
        sequence_length = len(input_ids)

        # Test right padding
        tokenizer.padding_side = "right"
514

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        padded_sequence = tokenizer.encode_plus(
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
        padded_input_ids = padded_sequence["input_ids"]
        padded_token_type_ids = padded_sequence["token_type_ids"]
        padded_attention_mask = padded_sequence["attention_mask"]
        padded_special_tokens_mask = padded_sequence["special_tokens_mask"]
        padded_sequence_length = len(padded_input_ids)

        assert sequence_length + padding_size == padded_sequence_length
        assert input_ids + [padding_idx] * padding_size == padded_input_ids
        assert token_type_ids + [token_type_padding_idx] * padding_size == padded_token_type_ids
        assert attention_mask + [0] * padding_size == padded_attention_mask
        assert special_tokens_mask + [1] * padding_size == padded_special_tokens_mask

        # Test left padding
        tokenizer.padding_side = "left"
        padded_sequence = tokenizer.encode_plus(
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
        padded_input_ids = padded_sequence["input_ids"]
        padded_token_type_ids = padded_sequence["token_type_ids"]
        padded_attention_mask = padded_sequence["attention_mask"]
        padded_special_tokens_mask = padded_sequence["special_tokens_mask"]
        padded_sequence_length = len(padded_input_ids)

        assert sequence_length + padding_size == padded_sequence_length
        assert [padding_idx] * padding_size + input_ids == padded_input_ids
        assert [token_type_padding_idx] * padding_size + token_type_ids == padded_token_type_ids
        assert [0] * padding_size + attention_mask == padded_attention_mask
        assert [1] * padding_size + special_tokens_mask == padded_special_tokens_mask
552
553
554
555
556
557

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

        tokenizer = self.get_tokenizer(random_argument=True)
Lysandre's avatar
Style  
Lysandre committed
558
        assert tokenizer.init_kwargs["random_argument"] is True
559
        new_tokenizer = self.get_tokenizer(random_argument=False)
Lysandre's avatar
Style  
Lysandre committed
560
561
        assert tokenizer.init_kwargs["random_argument"] is True
        assert new_tokenizer.init_kwargs["random_argument"] is False
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

    def test_get_vocab(self):
        tokenizer = self.get_tokenizer()
        vocab = tokenizer.get_vocab()

        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

        tokenizer.add_tokens(["asdfasdfasdfasdf"])
        vocab = tokenizer.get_vocab()
        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        encoded_sequences = [tokenizer.encode_plus(sequence, pad_to_max_length=False) for sequence in sequences]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        maximum_length = len(max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len))

600
601
602
        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

603
604
605
606
        encoded_sequences_padded = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=maximum_length)
            for sequence in sequences
        ]
607

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
        self.assertListEqual(
            encoded_sequences_padded,
            self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
        )

    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
626
627
628
629

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

630
631
632
633
634
635
636
637
638
639
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        # Left padding tests
        tokenizer = self.get_tokenizer()
640

641
642
643
644
645
646
647
648
        tokenizer.padding_side = "left"
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
649
650
651
652

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

    @require_torch
    @require_tf
    def test_batch_encode_plus_tensors(self):
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        # A Tensor cannot be build by sequences which are not the same size
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

        if tokenizer.pad_token_id is None:
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="pt"
            )
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="tf"
            )
        else:
            pytorch_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="pt")
            tensorflow_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="tf")
            encoded_sequences = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)

            for key in encoded_sequences.keys():
                pytorch_value = pytorch_tensor[key].tolist()
                tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                encoded_value = encoded_sequences[key]

                self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
693
694
695
696
697
698
699
700
701
702
703
704

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
                    tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
                else:
                    tokenizer.encode_plus(sequences, pad_to_max_length=True)

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})