"git@developer.sourcefind.cn:chenpangpang/parler-tts.git" did not exist on "9bde9933a0bc8d9c9f1e700b0143427b8783c8c0"
test_image_processing_detr.py 26.6 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import pathlib
import unittest

from transformers.testing_utils import require_torch, require_vision, slow
21
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
22

23
from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
24
25
26
27
28
29
30
31


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

32
    from transformers import DetrImageProcessor
NielsRogge's avatar
NielsRogge committed
33
34


35
class DetrImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
36
37
38
39
40
41
42
43
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
44
45
46
        size=None,
        do_rescale=True,
        rescale_factor=1 / 255,
NielsRogge's avatar
NielsRogge committed
47
48
49
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
50
        do_pad=True,
NielsRogge's avatar
NielsRogge committed
51
    ):
52
53
        # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
        size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
NielsRogge's avatar
NielsRogge committed
54
55
56
57
58
59
60
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
61
62
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
NielsRogge's avatar
NielsRogge committed
63
64
65
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
66
        self.do_pad = do_pad
NielsRogge's avatar
NielsRogge committed
67

68
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
69
70
71
        return {
            "do_resize": self.do_resize,
            "size": self.size,
72
73
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
NielsRogge's avatar
NielsRogge committed
74
75
76
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
77
            "do_pad": self.do_pad,
NielsRogge's avatar
NielsRogge committed
78
79
80
81
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
82
        This function computes the expected height and width when providing images to DetrImageProcessor,
NielsRogge's avatar
NielsRogge committed
83
84
85
86
87
88
89
90
91
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
92
93
                expected_height = int(self.size["shortest_edge"] * h / w)
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
94
            elif w > h:
95
96
                expected_height = self.size["shortest_edge"]
                expected_width = int(self.size["shortest_edge"] * w / h)
NielsRogge's avatar
NielsRogge committed
97
            else:
98
99
                expected_height = self.size["shortest_edge"]
                expected_width = self.size["shortest_edge"]
NielsRogge's avatar
NielsRogge committed
100
101
102
103
104
105
106
107
108
109
110

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def expected_output_image_shape(self, images):
        height, width = self.get_expected_values(images, batched=True)
        return self.num_channels, height, width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
126
127
128

@require_torch
@require_vision
129
class DetrImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
130
    image_processing_class = DetrImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
131
132

    def setUp(self):
133
        self.image_processor_tester = DetrImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
134
135

    @property
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_pad"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
        self.assertEqual(image_processor.do_pad, True)

        image_processor = self.image_processing_class.from_dict(
            self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False
157
        )
158
159
        self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84})
        self.assertEqual(image_processor.do_pad, False)
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    def test_should_raise_if_annotation_format_invalid(self):
        image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()

        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            detection_target = json.loads(f.read())

        annotations = {"image_id": 39769, "annotations": detection_target}

        params = {
            "images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "annotations": annotations,
            "return_tensors": "pt",
        }

        image_processor_params = {**image_processor_dict, **{"format": "_INVALID_FORMAT_"}}
        image_processor = self.image_processing_class(**image_processor_params)

        with self.assertRaises(ValueError) as e:
            image_processor(**params)

        self.assertTrue(str(e.exception).startswith("_INVALID_FORMAT_ is not a valid AnnotationFormat"))

    def test_valid_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        params = {"image_id": 39769, "annotations": target}

        # encode them
        image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")

        # legal encodings (single image)
        _ = image_processing(images=image, annotations=params, return_tensors="pt")
        _ = image_processing(images=image, annotations=[params], return_tensors="pt")

        # legal encodings (batch of one image)
        _ = image_processing(images=[image], annotations=params, return_tensors="pt")
        _ = image_processing(images=[image], annotations=[params], return_tensors="pt")

        # legal encoding (batch of more than one image)
        n = 5
        _ = image_processing(images=[image] * n, annotations=[params] * n, return_tensors="pt")

        # example of an illegal encoding (missing the 'image_id' key)
        with self.assertRaises(ValueError) as e:
            image_processing(images=image, annotations={"annotations": target}, return_tensors="pt")

        self.assertTrue(str(e.exception).startswith("Invalid COCO detection annotations"))

        # example of an illegal encoding (unequal lengths of images and annotations)
        with self.assertRaises(ValueError) as e:
            image_processing(images=[image] * n, annotations=[params] * (n - 1), return_tensors="pt")

        self.assertTrue(str(e.exception) == "The number of images (5) and annotations (4) do not match.")

NielsRogge's avatar
NielsRogge committed
218
219
220
221
222
223
224
225
226
227
    @slow
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        # encode them
228
229
        image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
        encoding = image_processing(images=image, annotations=target, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
230
231
232
233
234
235

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
236
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
237
238
239

        # verify area
        expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
240
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
241
242
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
243
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
244
        expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
245
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
246
247
        # verify image_id
        expected_image_id = torch.tensor([39769])
248
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
249
250
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
251
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
252
253
        # verify class_labels
        expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
254
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
255
256
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
257
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
258
259
        # verify size
        expected_size = torch.tensor([800, 1066])
260
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
NielsRogge's avatar
NielsRogge committed
261
262
263
264
265
266
267
268
269
270
271
272
273

    @slow
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        # encode them
274
275
        image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic")
        encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
276
277
278
279
280
281

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
282
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))
NielsRogge's avatar
NielsRogge committed
283
284
285

        # verify area
        expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
286
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
NielsRogge's avatar
NielsRogge committed
287
288
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
289
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
NielsRogge's avatar
NielsRogge committed
290
        expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
291
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
NielsRogge's avatar
NielsRogge committed
292
293
        # verify image_id
        expected_image_id = torch.tensor([39769])
294
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
NielsRogge's avatar
NielsRogge committed
295
296
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
297
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
NielsRogge's avatar
NielsRogge committed
298
299
        # verify class_labels
        expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
300
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
NielsRogge's avatar
NielsRogge committed
301
        # verify masks
302
        expected_masks_sum = 822873
303
        self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
NielsRogge's avatar
NielsRogge committed
304
305
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
306
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
NielsRogge's avatar
NielsRogge committed
307
308
        # verify size
        expected_size = torch.tensor([800, 1066])
309
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

    @slow
    def test_batched_coco_detection_annotations(self):
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        annotations_0 = {"image_id": 39769, "annotations": target}
        annotations_1 = {"image_id": 39769, "annotations": target}

        # Adjust the bounding boxes for the resized image
        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotations_1["annotations"])):
            coords = annotations_1["annotations"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotations_1["annotations"][i]["bbox"] = new_bbox

        images = [image_0, image_1]
        annotations = [annotations_0, annotations_1]

        image_processing = DetrImageProcessor()
        encoding = image_processing(
            images=images,
            annotations=annotations,
            return_segmentation_masks=True,
            return_tensors="pt",  # do_convert_annotations=True
        )

        # Check the pixel values have been padded
        postprocessed_height, postprocessed_width = 800, 1066
        expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        # Check the bounding boxes have been adjusted for padded images
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        expected_boxes_0 = torch.tensor(
            [
                [0.6879, 0.4609, 0.0755, 0.3691],
                [0.2118, 0.3359, 0.2601, 0.1566],
                [0.5011, 0.5000, 0.9979, 1.0000],
                [0.5010, 0.5020, 0.9979, 0.9959],
                [0.3284, 0.5944, 0.5884, 0.8112],
                [0.8394, 0.5445, 0.3213, 0.9110],
            ]
        )
        expected_boxes_1 = torch.tensor(
            [
                [0.4130, 0.2765, 0.0453, 0.2215],
                [0.1272, 0.2016, 0.1561, 0.0940],
                [0.3757, 0.4933, 0.7488, 0.9865],
                [0.3759, 0.5002, 0.7492, 0.9955],
                [0.1971, 0.5456, 0.3532, 0.8646],
                [0.5790, 0.4115, 0.3430, 0.7161],
            ]
        )
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))

        # Check the masks have also been padded
        self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
        self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

        # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
        # format and not in the range [0, 1]
        encoding = image_processing(
            images=images,
            annotations=annotations,
            return_segmentation_masks=True,
            do_convert_annotations=False,
            return_tensors="pt",
        )
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        # Convert to absolute coordinates
        unnormalized_boxes_0 = torch.vstack(
            [
                expected_boxes_0[:, 0] * postprocessed_width,
                expected_boxes_0[:, 1] * postprocessed_height,
                expected_boxes_0[:, 2] * postprocessed_width,
                expected_boxes_0[:, 3] * postprocessed_height,
            ]
        ).T
        unnormalized_boxes_1 = torch.vstack(
            [
                expected_boxes_1[:, 0] * postprocessed_width,
                expected_boxes_1[:, 1] * postprocessed_height,
                expected_boxes_1[:, 2] * postprocessed_width,
                expected_boxes_1[:, 3] * postprocessed_height,
            ]
        ).T
        # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
        expected_boxes_0 = torch.vstack(
            [
                unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
            ]
        ).T
        expected_boxes_1 = torch.vstack(
            [
                unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
            ]
        ).T
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))

    def test_batched_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
        annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotation_1["segments_info"])):
            coords = annotation_1["segments_info"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotation_1["segments_info"][i]["bbox"] = new_bbox

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        images = [image_0, image_1]
        annotations = [annotation_0, annotation_1]

        # encode them
        image_processing = DetrImageProcessor(format="coco_panoptic")
        encoding = image_processing(
            images=images,
            annotations=annotations,
            masks_path=masks_path,
            return_tensors="pt",
            return_segmentation_masks=True,
        )

        # Check the pixel values have been padded
        postprocessed_height, postprocessed_width = 800, 1066
        expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        # Check the bounding boxes have been adjusted for padded images
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        expected_boxes_0 = torch.tensor(
            [
                [0.2625, 0.5437, 0.4688, 0.8625],
                [0.7719, 0.4104, 0.4531, 0.7125],
                [0.5000, 0.4927, 0.9969, 0.9854],
                [0.1688, 0.2000, 0.2063, 0.0917],
                [0.5492, 0.2760, 0.0578, 0.2187],
                [0.4992, 0.4990, 0.9984, 0.9979],
            ]
        )
        expected_boxes_1 = torch.tensor(
            [
                [0.1576, 0.3262, 0.2814, 0.5175],
                [0.4634, 0.2463, 0.2720, 0.4275],
                [0.3002, 0.2956, 0.5985, 0.5913],
                [0.1013, 0.1200, 0.1238, 0.0550],
                [0.3297, 0.1656, 0.0347, 0.1312],
                [0.2997, 0.2994, 0.5994, 0.5987],
            ]
        )
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))

        # Check the masks have also been padded
        self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
        self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

        # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
        # format and not in the range [0, 1]
        encoding = image_processing(
            images=images,
            annotations=annotations,
            masks_path=masks_path,
            return_segmentation_masks=True,
            do_convert_annotations=False,
            return_tensors="pt",
        )
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        # Convert to absolute coordinates
        unnormalized_boxes_0 = torch.vstack(
            [
                expected_boxes_0[:, 0] * postprocessed_width,
                expected_boxes_0[:, 1] * postprocessed_height,
                expected_boxes_0[:, 2] * postprocessed_width,
                expected_boxes_0[:, 3] * postprocessed_height,
            ]
        ).T
        unnormalized_boxes_1 = torch.vstack(
            [
                expected_boxes_1[:, 0] * postprocessed_width,
                expected_boxes_1[:, 1] * postprocessed_height,
                expected_boxes_1[:, 2] * postprocessed_width,
                expected_boxes_1[:, 3] * postprocessed_height,
            ]
        ).T
        # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
        expected_boxes_0 = torch.vstack(
            [
                unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
            ]
        ).T
        expected_boxes_1 = torch.vstack(
            [
                unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
            ]
        ).T
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

    def test_max_width_max_height_resizing_and_pad_strategy(self):
        image_1 = torch.ones([200, 100, 3], dtype=torch.uint8)

        # do_pad=False, max_height=100, max_width=100, image=200x100 -> 100x50
        image_processor = DetrImageProcessor(
            size={"max_height": 100, "max_width": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 50]))

        # do_pad=False, max_height=300, max_width=100, image=200x100 -> 200x100
        image_processor = DetrImageProcessor(
            size={"max_height": 300, "max_width": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")

        # do_pad=True, max_height=100, max_width=100, image=200x100 -> 100x100
        image_processor = DetrImageProcessor(
            size={"max_height": 100, "max_width": 100}, do_pad=True, pad_size={"height": 100, "width": 100}
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 100]))

        # do_pad=True, max_height=300, max_width=100, image=200x100 -> 300x100
        image_processor = DetrImageProcessor(
            size={"max_height": 300, "max_width": 100},
            do_pad=True,
            pad_size={"height": 301, "width": 101},
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 301, 101]))

        ### Check for batch
        image_2 = torch.ones([100, 150, 3], dtype=torch.uint8)

        # do_pad=True, max_height=150, max_width=100, images=[200x100, 100x150] -> 150x100
        image_processor = DetrImageProcessor(
            size={"max_height": 150, "max_width": 100},
            do_pad=True,
            pad_size={"height": 150, "width": 100},
        )
        inputs = image_processor(images=[image_1, image_2], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([2, 3, 150, 100]))