test_image_processing_deta.py 23.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import pathlib
import unittest

from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available

24
from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import DetaImageProcessor


class DetaImageProcessingTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=None,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
        do_rescale=True,
        rescale_factor=1 / 255,
        do_pad=True,
    ):
        # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
        size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_pad = do_pad

    def prepare_image_processor_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_rescale": self.do_rescale,
            "rescale_factor": self.rescale_factor,
            "do_pad": self.do_pad,
        }

    def get_expected_values(self, image_inputs, batched=False):
        """
        This function computes the expected height and width when providing images to DetaImageProcessor,
        assuming do_resize is set to True with a scalar size.
        """
        if not batched:
            image = image_inputs[0]
            if isinstance(image, Image.Image):
                w, h = image.size
            else:
                h, w = image.shape[1], image.shape[2]
            if w < h:
                expected_height = int(self.size["shortest_edge"] * h / w)
                expected_width = self.size["shortest_edge"]
            elif w > h:
                expected_height = self.size["shortest_edge"]
                expected_width = int(self.size["shortest_edge"] * w / h)
            else:
                expected_height = self.size["shortest_edge"]
                expected_width = self.size["shortest_edge"]

        else:
            expected_values = []
            for image in image_inputs:
                expected_height, expected_width = self.get_expected_values([image])
                expected_values.append((expected_height, expected_width))
            expected_height = max(expected_values, key=lambda item: item[0])[0]
            expected_width = max(expected_values, key=lambda item: item[1])[1]

        return expected_height, expected_width

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def expected_output_image_shape(self, images):
        height, width = self.get_expected_values(images, batched=True)
        return self.num_channels, height, width

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
127
128
129

@require_torch
@require_vision
130
class DetaImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    image_processing_class = DetaImageProcessor if is_vision_available() else None

    def setUp(self):
        self.image_processor_tester = DetaImageProcessingTester(self)

    @property
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "do_pad"))
        self.assertTrue(hasattr(image_processing, "size"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333})
        self.assertEqual(image_processor.do_pad, True)

    @slow
    def test_call_pytorch_with_coco_detection_annotations(self):
        # prepare image and target
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"image_id": 39769, "annotations": target}

        # encode them
        image_processing = DetaImageProcessor()
        encoding = image_processing(images=image, annotations=target, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))

        # verify area
        expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
        expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
        # verify image_id
        expected_image_id = torch.tensor([39769])
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
        # verify class_labels
        expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
        # verify size
        expected_size = torch.tensor([800, 1066])
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))

    @slow
    def test_call_pytorch_with_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        # encode them
        image_processing = DetaImageProcessor(format="coco_panoptic")
        encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")

        # verify pixel values
        expected_shape = torch.Size([1, 3, 800, 1066])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
        self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4))

        # verify area
        expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
        self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area))
        # verify boxes
        expected_boxes_shape = torch.Size([6, 4])
        self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape)
        expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3))
        # verify image_id
        expected_image_id = torch.tensor([39769])
        self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id))
        # verify is_crowd
        expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
        self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd))
        # verify class_labels
        expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
        self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels))
        # verify masks
        expected_masks_sum = 822873
        self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum)
        # verify orig_size
        expected_orig_size = torch.tensor([480, 640])
        self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size))
        # verify size
        expected_size = torch.tensor([800, 1066])
        self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    @slow
    # Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_detection_annotations with Detr->Deta
    def test_batched_coco_detection_annotations(self):
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
            target = json.loads(f.read())

        annotations_0 = {"image_id": 39769, "annotations": target}
        annotations_1 = {"image_id": 39769, "annotations": target}

        # Adjust the bounding boxes for the resized image
        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotations_1["annotations"])):
            coords = annotations_1["annotations"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotations_1["annotations"][i]["bbox"] = new_bbox

        images = [image_0, image_1]
        annotations = [annotations_0, annotations_1]

        image_processing = DetaImageProcessor()
        encoding = image_processing(
            images=images,
            annotations=annotations,
            return_segmentation_masks=True,
            return_tensors="pt",  # do_convert_annotations=True
        )

        # Check the pixel values have been padded
        postprocessed_height, postprocessed_width = 800, 1066
        expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        # Check the bounding boxes have been adjusted for padded images
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        expected_boxes_0 = torch.tensor(
            [
                [0.6879, 0.4609, 0.0755, 0.3691],
                [0.2118, 0.3359, 0.2601, 0.1566],
                [0.5011, 0.5000, 0.9979, 1.0000],
                [0.5010, 0.5020, 0.9979, 0.9959],
                [0.3284, 0.5944, 0.5884, 0.8112],
                [0.8394, 0.5445, 0.3213, 0.9110],
            ]
        )
        expected_boxes_1 = torch.tensor(
            [
                [0.4130, 0.2765, 0.0453, 0.2215],
                [0.1272, 0.2016, 0.1561, 0.0940],
                [0.3757, 0.4933, 0.7488, 0.9865],
                [0.3759, 0.5002, 0.7492, 0.9955],
                [0.1971, 0.5456, 0.3532, 0.8646],
                [0.5790, 0.4115, 0.3430, 0.7161],
            ]
        )
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))

        # Check the masks have also been padded
        self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
        self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

        # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
        # format and not in the range [0, 1]
        encoding = image_processing(
            images=images,
            annotations=annotations,
            return_segmentation_masks=True,
            do_convert_annotations=False,
            return_tensors="pt",
        )
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        # Convert to absolute coordinates
        unnormalized_boxes_0 = torch.vstack(
            [
                expected_boxes_0[:, 0] * postprocessed_width,
                expected_boxes_0[:, 1] * postprocessed_height,
                expected_boxes_0[:, 2] * postprocessed_width,
                expected_boxes_0[:, 3] * postprocessed_height,
            ]
        ).T
        unnormalized_boxes_1 = torch.vstack(
            [
                expected_boxes_1[:, 0] * postprocessed_width,
                expected_boxes_1[:, 1] * postprocessed_height,
                expected_boxes_1[:, 2] * postprocessed_width,
                expected_boxes_1[:, 3] * postprocessed_height,
            ]
        ).T
        # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
        expected_boxes_0 = torch.vstack(
            [
                unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
            ]
        ).T
        expected_boxes_1 = torch.vstack(
            [
                unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
            ]
        ).T
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))

    # Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_batched_coco_panoptic_annotations with Detr->Deta
    def test_batched_coco_panoptic_annotations(self):
        # prepare image, target and masks_path
        image_0 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        image_1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png").resize((800, 800))

        with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
            target = json.loads(f.read())

        annotation_0 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
        annotation_1 = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}

        w_0, h_0 = image_0.size
        w_1, h_1 = image_1.size
        for i in range(len(annotation_1["segments_info"])):
            coords = annotation_1["segments_info"][i]["bbox"]
            new_bbox = [
                coords[0] * w_1 / w_0,
                coords[1] * h_1 / h_0,
                coords[2] * w_1 / w_0,
                coords[3] * h_1 / h_0,
            ]
            annotation_1["segments_info"][i]["bbox"] = new_bbox

        masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")

        images = [image_0, image_1]
        annotations = [annotation_0, annotation_1]

        # encode them
        image_processing = DetaImageProcessor(format="coco_panoptic")
        encoding = image_processing(
            images=images,
            annotations=annotations,
            masks_path=masks_path,
            return_tensors="pt",
            return_segmentation_masks=True,
        )

        # Check the pixel values have been padded
        postprocessed_height, postprocessed_width = 800, 1066
        expected_shape = torch.Size([2, 3, postprocessed_height, postprocessed_width])
        self.assertEqual(encoding["pixel_values"].shape, expected_shape)

        # Check the bounding boxes have been adjusted for padded images
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        expected_boxes_0 = torch.tensor(
            [
                [0.2625, 0.5437, 0.4688, 0.8625],
                [0.7719, 0.4104, 0.4531, 0.7125],
                [0.5000, 0.4927, 0.9969, 0.9854],
                [0.1688, 0.2000, 0.2063, 0.0917],
                [0.5492, 0.2760, 0.0578, 0.2187],
                [0.4992, 0.4990, 0.9984, 0.9979],
            ]
        )
        expected_boxes_1 = torch.tensor(
            [
                [0.1576, 0.3262, 0.2814, 0.5175],
                [0.4634, 0.2463, 0.2720, 0.4275],
                [0.3002, 0.2956, 0.5985, 0.5913],
                [0.1013, 0.1200, 0.1238, 0.0550],
                [0.3297, 0.1656, 0.0347, 0.1312],
                [0.2997, 0.2994, 0.5994, 0.5987],
            ]
        )
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1e-3))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1e-3))

        # Check the masks have also been padded
        self.assertEqual(encoding["labels"][0]["masks"].shape, torch.Size([6, 800, 1066]))
        self.assertEqual(encoding["labels"][1]["masks"].shape, torch.Size([6, 800, 1066]))

        # Check if do_convert_annotations=False, then the annotations are not converted to centre_x, centre_y, width, height
        # format and not in the range [0, 1]
        encoding = image_processing(
            images=images,
            annotations=annotations,
            masks_path=masks_path,
            return_segmentation_masks=True,
            do_convert_annotations=False,
            return_tensors="pt",
        )
        self.assertEqual(encoding["labels"][0]["boxes"].shape, torch.Size([6, 4]))
        self.assertEqual(encoding["labels"][1]["boxes"].shape, torch.Size([6, 4]))
        # Convert to absolute coordinates
        unnormalized_boxes_0 = torch.vstack(
            [
                expected_boxes_0[:, 0] * postprocessed_width,
                expected_boxes_0[:, 1] * postprocessed_height,
                expected_boxes_0[:, 2] * postprocessed_width,
                expected_boxes_0[:, 3] * postprocessed_height,
            ]
        ).T
        unnormalized_boxes_1 = torch.vstack(
            [
                expected_boxes_1[:, 0] * postprocessed_width,
                expected_boxes_1[:, 1] * postprocessed_height,
                expected_boxes_1[:, 2] * postprocessed_width,
                expected_boxes_1[:, 3] * postprocessed_height,
            ]
        ).T
        # Convert from centre_x, centre_y, width, height to x_min, y_min, x_max, y_max
        expected_boxes_0 = torch.vstack(
            [
                unnormalized_boxes_0[:, 0] - unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] - unnormalized_boxes_0[:, 3] / 2,
                unnormalized_boxes_0[:, 0] + unnormalized_boxes_0[:, 2] / 2,
                unnormalized_boxes_0[:, 1] + unnormalized_boxes_0[:, 3] / 2,
            ]
        ).T
        expected_boxes_1 = torch.vstack(
            [
                unnormalized_boxes_1[:, 0] - unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] - unnormalized_boxes_1[:, 3] / 2,
                unnormalized_boxes_1[:, 0] + unnormalized_boxes_1[:, 2] / 2,
                unnormalized_boxes_1[:, 1] + unnormalized_boxes_1[:, 3] / 2,
            ]
        ).T
        self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"], expected_boxes_0, rtol=1))
        self.assertTrue(torch.allclose(encoding["labels"][1]["boxes"], expected_boxes_1, rtol=1))
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

    # Copied from tests.models.detr.test_image_processing_detr.DetrImageProcessingTest.test_max_width_max_height_resizing_and_pad_strategy with Detr->Deta
    def test_max_width_max_height_resizing_and_pad_strategy(self):
        image_1 = torch.ones([200, 100, 3], dtype=torch.uint8)

        # do_pad=False, max_height=100, max_width=100, image=200x100 -> 100x50
        image_processor = DetaImageProcessor(
            size={"max_height": 100, "max_width": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 50]))

        # do_pad=False, max_height=300, max_width=100, image=200x100 -> 200x100
        image_processor = DetaImageProcessor(
            size={"max_height": 300, "max_width": 100},
            do_pad=False,
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")

        # do_pad=True, max_height=100, max_width=100, image=200x100 -> 100x100
        image_processor = DetaImageProcessor(
            size={"max_height": 100, "max_width": 100}, do_pad=True, pad_size={"height": 100, "width": 100}
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 100, 100]))

        # do_pad=True, max_height=300, max_width=100, image=200x100 -> 300x100
        image_processor = DetaImageProcessor(
            size={"max_height": 300, "max_width": 100},
            do_pad=True,
            pad_size={"height": 301, "width": 101},
        )
        inputs = image_processor(images=[image_1], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([1, 3, 301, 101]))

        ### Check for batch
        image_2 = torch.ones([100, 150, 3], dtype=torch.uint8)

        # do_pad=True, max_height=150, max_width=100, images=[200x100, 100x150] -> 150x100
        image_processor = DetaImageProcessor(
            size={"max_height": 150, "max_width": 100},
            do_pad=True,
            pad_size={"height": 150, "width": 100},
        )
        inputs = image_processor(images=[image_1, image_2], return_tensors="pt")
        self.assertEqual(inputs["pixel_values"].shape, torch.Size([2, 3, 150, 100]))