tokenization_xlnet.py 8.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for XLNet model."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
from shutil import copyfile

import unicodedata
import six

thomwolf's avatar
thomwolf committed
26
from .tokenization_utils import PreTrainedTokenizer
thomwolf's avatar
thomwolf committed
27
28
29

logger = logging.getLogger(__name__)

30
31
32
33
34
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}

PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
35
    'xlnet-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-spiece.model",
thomwolf's avatar
thomwolf committed
36
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
37
    }
thomwolf's avatar
thomwolf committed
38
}
39
40

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
41
42
    'xlnet-base-cased': None,
    'xlnet-large-cased': None,
43
44
}

45
46
47
SPIECE_UNDERLINE = u'▁'

# Segments (not really needed)
48
49
50
51
52
SEG_ID_A   = 0
SEG_ID_B   = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4
thomwolf's avatar
thomwolf committed
53

54
class XLNetTokenizer(PreTrainedTokenizer):
thomwolf's avatar
thomwolf committed
55
56
    """
        SentencePiece based tokenizer. Peculiarities:
57
58

            - requires `SentencePiece <https://github.com/google/sentencepiece>`_
thomwolf's avatar
thomwolf committed
59
    """
60
61
62
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
thomwolf's avatar
thomwolf committed
63

thomwolf's avatar
thomwolf committed
64
    def __init__(self, vocab_file,
65
66
67
68
69
70
71
72
73
                 do_lower_case=False, remove_space=True, keep_accents=False,
                 bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>",
                 pad_token="<pad>", cls_token="<cls>", mask_token="<mask>",
                 additional_special_tokens=["<eop>", "<eod>"], **kwargs):
        super(XLNetTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token,
                                             unk_token=unk_token, sep_token=sep_token,
                                             pad_token=pad_token, cls_token=cls_token,
                                             mask_token=mask_token, additional_special_tokens=
                                             additional_special_tokens, **kwargs)
74
75
76
77

        self.max_len_single_sentence = self.max_len - 2  # take into account special tokens
        self.max_len_sentences_pair = self.max_len - 3  # take into account special tokens

thomwolf's avatar
thomwolf committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")

        self.do_lower_case = do_lower_case
        self.remove_space = remove_space
        self.keep_accents = keep_accents
        self.vocab_file = vocab_file

        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(vocab_file)

92
    @property
93
    def vocab_size(self):
94
        return len(self.sp_model)
thomwolf's avatar
thomwolf committed
95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    def __getstate__(self):
        state = self.__dict__.copy()
        state["sp_model"] = None
        return state

    def __setstate__(self, d):
        self.__dict__ = d
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")
        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(self.vocab_file)

thomwolf's avatar
thomwolf committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    def preprocess_text(self, inputs):
        if self.remove_space:
            outputs = ' '.join(inputs.strip().split())
        else:
            outputs = inputs
        outputs = outputs.replace("``", '"').replace("''", '"')

        if six.PY2 and isinstance(outputs, str):
            outputs = outputs.decode('utf-8')

        if not self.keep_accents:
            outputs = unicodedata.normalize('NFKD', outputs)
            outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
        if self.do_lower_case:
            outputs = outputs.lower()

        return outputs

129
    def _tokenize(self, text, return_unicode=True, sample=False):
thomwolf's avatar
thomwolf committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        """ Tokenize a string.
            return_unicode is used only for py2
        """
        text = self.preprocess_text(text)
        # note(zhiliny): in some systems, sentencepiece only accepts str for py2
        if six.PY2 and isinstance(text, unicode):
            text = text.encode('utf-8')

        if not sample:
            pieces = self.sp_model.EncodeAsPieces(text)
        else:
            pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(
                    piece[:-1].replace(SPIECE_UNDERLINE, ''))
                if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        # note(zhiliny): convert back to unicode for py2
        if six.PY2 and return_unicode:
            ret_pieces = []
            for piece in new_pieces:
                if isinstance(piece, str):
                    piece = piece.decode('utf-8')
                ret_pieces.append(piece)
            new_pieces = ret_pieces

        return new_pieces

168
169
170
    def _convert_token_to_id(self, token):
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.sp_model.PieceToId(token)
thomwolf's avatar
thomwolf committed
171

172
173
174
175
176
177
    def _convert_id_to_token(self, index, return_unicode=True):
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        token = self.sp_model.IdToPiece(index)
        if six.PY2 and return_unicode and isinstance(token, str):
            token = token.decode('utf-8')
        return token
thomwolf's avatar
thomwolf committed
178

179
180
181
    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (strings for sub-words) in a single string."""
        out_string = ''.join(tokens).replace(SPIECE_UNDERLINE, ' ').strip()
thomwolf's avatar
thomwolf committed
182
183
        return out_string

184
    def add_special_tokens_single_sequence(self, token_ids):
185
186
187
188
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        An XLNet sequence pair has the following format: A [SEP] B [SEP][CLS]
        """
189
190
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
191
        return token_ids + sep + cls
192

193
    def add_special_tokens_sequence_pair(self, token_ids_0, token_ids_1):
194
195
196
197
        """
        Adds special tokens to a sequence for sequence classification tasks.
        An XLNet sequence has the following format: X [SEP][CLS]
        """
198

199
200
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
201
        cls_segment_ids = [2]
202
        return token_ids_0 + sep + token_ids_1 + sep + cls
203

204
    def save_vocabulary(self, save_directory):
thomwolf's avatar
thomwolf committed
205
206
207
        """ Save the sentencepiece vocabulary (copy original file) and special tokens file
            to a directory.
        """
208
209
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
thomwolf's avatar
thomwolf committed
210
            return
211
        out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
thomwolf's avatar
thomwolf committed
212

213
214
        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
thomwolf's avatar
thomwolf committed
215

216
        return (out_vocab_file,)