"vscode:/vscode.git/clone" did not exist on "31a5486e42a50bd19cba5c2300f54aa159fab2ed"
optimization.py 7.76 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

17
18
19
import math
import torch
from torch.optim import Optimizer
Li Li's avatar
Li Li committed
20
from torch.optim.optimizer import required
21
from torch.nn.utils import clip_grad_norm_
lukovnikov's avatar
lukovnikov committed
22
23
24
import logging

logger = logging.getLogger(__name__)
25
26

def warmup_cosine(x, warmup=0.002):
thomwolf's avatar
thomwolf committed
27
28
    if x < warmup:
        return x/warmup
lukovnikov's avatar
lukovnikov committed
29
30
31

    x_ = (x - warmup) / (1 - warmup)  # progress after warmup
    return 0.5 * (1. + math.cos(math.pi * x_))
32
33

def warmup_constant(x, warmup=0.002):
34
35
    """ Linearly increases learning rate over `warmup`*`t_total` (as provided to BertAdam) training steps.
        Learning rate is 1. afterwards. """
thomwolf's avatar
thomwolf committed
36
37
38
    if x < warmup:
        return x/warmup
    return 1.0
39
40

def warmup_linear(x, warmup=0.002):
41
42
    """ Specifies a triangular learning rate schedule where peak is reached at `warmup`*`t_total`-th (as provided to BertAdam) training step.
        After `t_total`-th training step, learning rate is zero. """
thomwolf's avatar
thomwolf committed
43
44
    if x < warmup:
        return x/warmup
45
    return max((x-1.)/(warmup-1.), 0)
46
47

SCHEDULES = {
lukovnikov's avatar
lukovnikov committed
48
49
50
    'warmup_cosine':   warmup_cosine,
    'warmup_constant': warmup_constant,
    'warmup_linear':   warmup_linear,
51
52
53
}


thomwolf's avatar
thomwolf committed
54
class BertAdam(Optimizer):
thomwolf's avatar
thomwolf committed
55
    """Implements BERT version of Adam algorithm with weight decay fix.
thomwolf's avatar
thomwolf committed
56
    Params:
thomwolf's avatar
thomwolf committed
57
58
59
60
61
62
63
64
        lr: learning rate
        warmup: portion of t_total for the warmup, -1  means no warmup. Default: -1
        t_total: total number of training steps for the learning
            rate schedule, -1  means constant learning rate. Default: -1
        schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
        b1: Adams b1. Default: 0.9
        b2: Adams b2. Default: 0.999
        e: Adams epsilon. Default: 1e-6
65
        weight_decay: Weight decay. Default: 0.01
thomwolf's avatar
thomwolf committed
66
        max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
67
    """
Li Li's avatar
Li Li committed
68
    def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
69
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
thomwolf's avatar
thomwolf committed
70
                 max_grad_norm=1.0):
Li Li's avatar
Li Li committed
71
        if lr is not required and lr < 0.0:
thomwolf's avatar
thomwolf committed
72
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
73
74
        if schedule not in SCHEDULES:
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
thomwolf's avatar
thomwolf committed
75
76
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
77
        if not 0.0 <= b1 < 1.0:
thomwolf's avatar
thomwolf committed
78
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
79
        if not 0.0 <= b2 < 1.0:
thomwolf's avatar
thomwolf committed
80
81
82
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
83
        defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
84
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay,
85
                        max_grad_norm=max_grad_norm)
thomwolf's avatar
thomwolf committed
86
        super(BertAdam, self).__init__(params, defaults)
87
88
89
90
91
92
93
94

    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
thomwolf's avatar
thomwolf committed
95
96
97
98
99
                if group['t_total'] != -1:
                    schedule_fct = SCHEDULES[group['schedule']]
                    lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
                else:
                    lr_scheduled = group['lr']
100
101
102
103
104
105
106
107
108
109
110
111
112
113
                lr.append(lr_scheduled)
        return lr

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

lukovnikov's avatar
lukovnikov committed
114
115
        warned_for_t_total = False

116
117
118
119
120
121
122
123
124
125
126
127
128
129
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
thomwolf's avatar
thomwolf committed
130
                    state['next_m'] = torch.zeros_like(p.data)
131
                    # Exponential moving average of squared gradient values
thomwolf's avatar
thomwolf committed
132
                    state['next_v'] = torch.zeros_like(p.data)
133

thomwolf's avatar
thomwolf committed
134
                next_m, next_v = state['next_m'], state['next_v']
135
136
137
138
139
140
141
                beta1, beta2 = group['b1'], group['b2']

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
thomwolf's avatar
thomwolf committed
142
143
144
145
                # In-place operations to update the averages at the same time
                next_m.mul_(beta1).add_(1 - beta1, grad)
                next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                update = next_m / (next_v.sqrt() + group['e'])
146
147
148
149
150

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
thomwolf's avatar
thomwolf committed
151
                # Instead we want to decay the weights in a manner that doesn't interact
152
153
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
154
155
                if group['weight_decay'] > 0.0:
                    update += group['weight_decay'] * p.data
thomwolf's avatar
thomwolf committed
156
157
158

                if group['t_total'] != -1:
                    schedule_fct = SCHEDULES[group['schedule']]
lukovnikov's avatar
lukovnikov committed
159
                    progress = state['step']/group['t_total']
lukovnikov's avatar
lukovnikov committed
160
161
                    lr_scheduled = group['lr'] * schedule_fct(progress, group['warmup'])
                    # warning for exceeding t_total (only active with warmup_linear
lukovnikov's avatar
lukovnikov committed
162
                    if group['schedule'] == "warmup_linear" and progress > 1. and not warned_for_t_total:
lukovnikov's avatar
lukovnikov committed
163
                        logger.warning(
lukovnikov's avatar
lukovnikov committed
164
165
                            "Training beyond specified 't_total' steps with schedule '{}'. Learning rate set to {}. "
                            "Please set 't_total' of {} correctly.".format(group['schedule'], lr_scheduled, self.__class__.__name__))
lukovnikov's avatar
lukovnikov committed
166
                        warned_for_t_total = True
lukovnikov's avatar
lukovnikov committed
167
                    # end warning
thomwolf's avatar
thomwolf committed
168
169
170
171
172
173
174
175
176
                else:
                    lr_scheduled = group['lr']

                update_with_lr = lr_scheduled * update
                p.data.add_(-update_with_lr)

                state['step'] += 1

                # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
thomwolf's avatar
thomwolf committed
177
                # No bias correction
thomwolf's avatar
thomwolf committed
178
179
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
180
181

        return loss