test_modeling_gptj.py 29.3 KB
Newer Older
Stella Biderman's avatar
Stella Biderman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import datetime
import unittest

20
21
22
23
24
25
26
27
28
29
30
31
import pytest

from transformers import BitsAndBytesConfig, GPTJConfig, is_torch_available
from transformers.testing_utils import (
    require_bitsandbytes,
    require_flash_attn,
    require_torch,
    require_torch_gpu,
    slow,
    tooslow,
    torch_device,
)
Stella Biderman's avatar
Stella Biderman committed
32

33
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
34
35
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
36
from ...test_pipeline_mixin import PipelineTesterMixin
Stella Biderman's avatar
Stella Biderman committed
37
38
39
40
41
42
43
44
45


if is_torch_available():
    import torch

    from transformers import (
        GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
        AutoTokenizer,
        GPTJForCausalLM,
46
        GPTJForQuestionAnswering,
Stella Biderman's avatar
Stella Biderman committed
47
48
49
        GPTJForSequenceClassification,
        GPTJModel,
    )
50
51
52
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
else:
    is_torch_greater_or_equal_than_1_12 = False
Stella Biderman's avatar
Stella Biderman committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


class GPTJModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
Suraj Patil's avatar
Suraj Patil committed
68
        rotary_dim=4,
69
        num_hidden_layers=2,
Stella Biderman's avatar
Stella Biderman committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
Suraj Patil's avatar
Suraj Patil committed
92
        self.rotary_dim = rotary_dim
Stella Biderman's avatar
Stella Biderman committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1

    def get_large_model_config(self):
        return GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B")

113
    def prepare_config_and_inputs(self):
Stella Biderman's avatar
Stella Biderman committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

136
        config = self.get_config()
Stella Biderman's avatar
Stella Biderman committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

152
    def get_config(self):
Stella Biderman's avatar
Stella Biderman committed
153
154
155
156
157
158
159
160
161
162
163
164
        return GPTJConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
165
            use_cache=True,
Stella Biderman's avatar
Stella Biderman committed
166
167
168
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
Suraj Patil's avatar
Suraj Patil committed
169
            rotary_dim=self.rotary_dim,
Stella Biderman's avatar
Stella Biderman committed
170
171
        )

172
173
174
175
176
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

Stella Biderman's avatar
Stella Biderman committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)

    def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gptj_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gptj_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
        )["last_hidden_state"]
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTJForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

343
344
345
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
Stella Biderman's avatar
Stella Biderman committed
346
        model = GPTJForCausalLM(config)
347
348
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
Stella Biderman's avatar
Stella Biderman committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        model.to(torch_device)

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict


@require_torch
377
class GPTJModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
378
379
380
381
382
    all_model_classes = (
        (GPTJModel, GPTJForCausalLM, GPTJForSequenceClassification, GPTJForQuestionAnswering)
        if is_torch_available()
        else ()
    )
Stella Biderman's avatar
Stella Biderman committed
383
    all_generative_model_classes = (GPTJForCausalLM,) if is_torch_available() else ()
384
385
386
387
388
389
390
391
392
393
394
    pipeline_model_mapping = (
        {
            "feature-extraction": GPTJModel,
            "question-answering": GPTJForQuestionAnswering,
            "text-classification": GPTJForSequenceClassification,
            "text-generation": GPTJForCausalLM,
            "zero-shot": GPTJForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
395
    fx_compatible = True
Stella Biderman's avatar
Stella Biderman committed
396
397
398
    test_pruning = False
    test_missing_keys = False
    test_model_parallel = False
399
    test_head_masking = False
Stella Biderman's avatar
Stella Biderman committed
400

401
402
403
404
405
406
407
408
409
410
411
412
    @unittest.skipIf(
        not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+."
    )
    def test_torch_fx(self):
        super().test_torch_fx()

    @unittest.skipIf(
        not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+."
    )
    def test_torch_fx_output_loss(self):
        super().test_torch_fx_output_loss()

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if (
            pipeline_test_casse_name == "QAPipelineTests"
            and tokenizer_name is not None
            and not tokenizer_name.endswith("Fast")
        ):
            # `QAPipelineTests` fails for a few models when the slower tokenizer are used.
            # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
            # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
            return True

        return False

Stella Biderman's avatar
Stella Biderman committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
        return inputs_dict

    def setUp(self):
        self.model_tester = GPTJModelTester(self)
        self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gptj_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model(*config_and_inputs)

    def test_gptj_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_past(*config_and_inputs)

    def test_gptj_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs)

    def test_gptj_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs)

    def test_gptj_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gptj_gradient_checkpointing(self):
462
463
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
Stella Biderman's avatar
Stella Biderman committed
464

465
    @tooslow
Stella Biderman's avatar
Stella Biderman committed
466
    def test_batch_generation(self):
467
        # Marked as @tooslow due to GPU OOM
468
        model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16)
Stella Biderman's avatar
Stella Biderman committed
469
        model.to(torch_device)
470
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
Stella Biderman's avatar
Stella Biderman committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
            token_type_ids=token_type_ids,
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little over a year old and has been diagnosed with a heart murmur",
            "Today, I鈥檓 going to talk about the most important thing in the",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_model_from_pretrained(self):
        for model_name in GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
528
            model = GPTJModel.from_pretrained(model_name, revision="float16", torch_dtype=torch.float16)
Stella Biderman's avatar
Stella Biderman committed
529
530
            self.assertIsNotNone(model)

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    @require_flash_attn
    @require_torch_gpu
    @require_bitsandbytes
    @pytest.mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6b")

        texts = ["hi", "Hello this is a very long sentence"]
        expected_outputs = [
            "hi<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>Q: I have a question about the new version of the game. I have a question about the",
            "Hello this is a very long sentence.\n\nA:\n\nI think the best way to understand this is to think of it",
        ]

        tokenizer.padding_side = "right"
        tokenizer.pad_token = tokenizer.eos_token

        inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)

        quantization_config = BitsAndBytesConfig(load_in_4bit=True)

        model = GPTJForCausalLM.from_pretrained(
            "EleutherAI/gpt-j-6b",
            device_map={"": 0},
            attn_implementation="flash_attention_2",
            revision="float16",
            torch_dtype=torch.float16,
            quantization_config=quantization_config,
        )

        output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_fa_2 = tokenizer.batch_decode(output_fa_2)

        self.assertListEqual(expected_outputs, output_fa_2)

Stella Biderman's avatar
Stella Biderman committed
569
570
571

@require_torch
class GPTJModelLanguageGenerationTest(unittest.TestCase):
572
    @tooslow
Stella Biderman's avatar
Stella Biderman committed
573
    def test_lm_generate_gptj(self):
574
        # Marked as @tooslow due to GPU OOM
Stella Biderman's avatar
Stella Biderman committed
575
        for checkpointing in [True, False]:
576
577
578
            model = GPTJForCausalLM.from_pretrained(
                "EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16
            )
579
580
581
582
            if checkpointing:
                model.gradient_checkpointing_enable()
            else:
                model.gradient_checkpointing_disable()
Stella Biderman's avatar
Stella Biderman committed
583
584
            model.to(torch_device)
            input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)  # The dog
585
            # The dog is a man's best friend. It is a loyal companion, and it is a friend
586
            expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545]  # fmt: skip
Stella Biderman's avatar
Stella Biderman committed
587
588
589
            output_ids = model.generate(input_ids, do_sample=False)
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

590
    @tooslow
Stella Biderman's avatar
Stella Biderman committed
591
    def test_gptj_sample(self):
592
593
594
        # Marked as @tooslow due to GPU OOM (issue #13676)
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
        model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16)
Stella Biderman's avatar
Stella Biderman committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)
        output_ids = model.generate(input_ids, do_sample=True)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        token_type_ids = tokenized.token_type_ids.to(torch_device)
        output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
        output_seq_tt = model.generate(
            input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
        )
        output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
        output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)

611
612
        if torch_device != "cpu":
            # currently this expect value is only for `cuda`
613
614
615
616
617
618
            EXPECTED_OUTPUT_STR = (
                "Today is a nice day and I've already been enjoying it. I walked to work with my wife"
            )
        else:
            EXPECTED_OUTPUT_STR = "Today is a nice day and one of those days that feels a bit more alive. I am ready"

Stella Biderman's avatar
Stella Biderman committed
619
620
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
        self.assertTrue(
621
            all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs)))
Stella Biderman's avatar
Stella Biderman committed
622
623
624
625
        )  # token_type_ids should change output

    @slow
    def test_gptj_sample_max_time(self):
626
627
        tokenizer = AutoTokenizer.from_pretrained("anton-l/gpt-j-tiny-random")
        model = GPTJForCausalLM.from_pretrained("anton-l/gpt-j-tiny-random")
Stella Biderman's avatar
Stella Biderman committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)

        MAX_TIME = 0.5

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

    @tooslow
    def test_contrastive_search_gptj(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and "
            "research laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
        model = GPTJForCausalLM.from_pretrained(
            "EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16
        ).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom with offices in Mountain View, San Francisco, New York City, Paris, Tokyo, Seoul, "
                "Beijing, Singapore, Tel Aviv, Dublin, Sydney, and Melbourne.[1]\n\nContents\n\nIn 2010, Google's "
                "parent company, Alphabet, announced a $500 million investment in DeepMind, with the aim of creating "
                "a company that would apply deep learning to problems in healthcare, energy, transportation, and "
                "other areas.[2]\n\nOn April 23, 2014, Google announced that it had acquired DeepMind for $400 "
                "million in cash and stock.[3] The acquisition was seen as a way for Google to enter the "
                "fast-growing field of artificial intelligence (AI), which it had so far avoided due to concerns "
                'about ethical and social implications.[4] Google co-founder Sergey Brin said that he was "thrilled" '
                'to have acquired DeepMind, and that it would "help us push the boundaries of AI even further."'
                "[5]\n\nDeepMind's founders, Demis Hassabis and Mustafa Suleyman, were joined by a number of Google "
                "employees"
            ],
        )