test_modeling_roberta.py 22.7 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import unittest
18

19
from transformers import RobertaConfig, is_torch_available
20
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
thomwolf's avatar
thomwolf committed
29
    import torch
30

31
    from transformers import (
32
        RobertaForCausalLM,
33
        RobertaForMaskedLM,
34
35
        RobertaForMultipleChoice,
        RobertaForQuestionAnswering,
36
37
        RobertaForSequenceClassification,
        RobertaForTokenClassification,
38
39
        RobertaModel,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
40
    from transformers.models.roberta.modeling_roberta import (
41
42
43
        ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
        RobertaEmbeddings,
        create_position_ids_from_input_ids,
44
    )
45

46
47
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"

48

49
50
class RobertaModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
51
52
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
53
54
55
56
57
58
59
60
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
61
        num_hidden_layers=2,
Yih-Dar's avatar
Yih-Dar committed
62
63
64
65
66
67
68
69
70
71
72
73
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
74
75
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
97
98
99
100
101
102

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
103
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
104
105
106
107
108
109
110
111
112
113
114
115
116

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

117
118
119
120
121
122
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return RobertaConfig(
123
124
125
126
127
128
129
130
131
132
133
134
135
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

136
137
138
139
140
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(
169
170
171
172
173
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
174
175
176
177
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

Stas Bekman's avatar
Stas Bekman committed
178
179
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = RobertaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = RobertaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = RobertaForCausalLM(config=config).to(torch_device).eval()

        # make sure that ids don't start with pad token
        mask = input_ids.ne(config.pad_token_id).long()
        input_ids = input_ids * mask

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)

        # make sure that ids don't start with pad token
        mask = next_tokens.ne(config.pad_token_id).long()
        next_tokens = next_tokens * mask
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

300
    def create_and_check_for_masked_lm(
301
302
303
304
305
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
306
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
307
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
308

309
    def create_and_check_for_token_classification(
310
311
312
313
314
315
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = RobertaForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
316
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
317
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
318

319
    def create_and_check_for_multiple_choice(
320
321
322
323
324
325
326
327
328
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = RobertaForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
329
        result = model(
330
331
332
333
334
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
335
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
336

337
    def create_and_check_for_question_answering(
338
339
340
341
342
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = RobertaForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
343
        result = model(
344
345
346
347
348
349
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
350
351
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


368
@require_torch
369
class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
370
371
    all_model_classes = (
        (
372
            RobertaForCausalLM,
373
374
375
376
377
378
379
380
381
382
            RobertaForMaskedLM,
            RobertaModel,
            RobertaForSequenceClassification,
            RobertaForTokenClassification,
            RobertaForMultipleChoice,
            RobertaForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
383
    all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else ()
384
385
386
387
388
389
390
391
392
393
394
395
396
    pipeline_model_mapping = (
        {
            "feature-extraction": RobertaModel,
            "fill-mask": RobertaForMaskedLM,
            "question-answering": RobertaForQuestionAnswering,
            "text-classification": RobertaForSequenceClassification,
            "text-generation": RobertaForCausalLM,
            "token-classification": RobertaForTokenClassification,
            "zero-shot": RobertaForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
397
    fx_compatible = True
398
399

    def setUp(self):
400
        self.model_tester = RobertaModelTester(self)
401
402
403
404
405
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

406
    def test_model(self):
407
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
408
409
        self.model_tester.create_and_check_model(*config_and_inputs)

410
411
412
413
414
415
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    def test_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)

    def test_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_model_as_decoder(
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
451

452
453
454
455
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

456
457
458
459
460
    def test_decoder_model_past_with_large_inputs_relative_pos_emb(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        config_and_inputs[0].position_embedding_type = "relative_key"
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

461
462
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
463
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
464

Lysandre's avatar
Lysandre committed
465
466
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
467
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
Lysandre's avatar
Lysandre committed
468
469
470

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
471
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
Lysandre's avatar
Lysandre committed
472
473
474

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
475
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
Lysandre's avatar
Lysandre committed
476

477
    @slow
478
    def test_model_from_pretrained(self):
479
        for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
480
            model = RobertaModel.from_pretrained(model_name)
481
482
            self.assertIsNotNone(model)

Dom Hudson's avatar
Dom Hudson committed
483
    def test_create_position_ids_respects_padding_index(self):
Lysandre's avatar
Lysandre committed
484
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
485
486
487
488
489
490
491
492
493
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
        model = RobertaEmbeddings(config=config)

        input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
494
495
496
        expected_positions = torch.as_tensor(
            [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
        )
Dom Hudson's avatar
Dom Hudson committed
497

Sam Shleifer's avatar
Sam Shleifer committed
498
        position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
499
        self.assertEqual(position_ids.shape, expected_positions.shape)
Dom Hudson's avatar
Dom Hudson committed
500
501
502
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))

    def test_create_position_ids_from_inputs_embeds(self):
Lysandre's avatar
Lysandre committed
503
        """Ensure that the default position ids only assign a sequential . This is a regression
Dom Hudson's avatar
Dom Hudson committed
504
505
506
507
508
509
        test for https://github.com/huggingface/transformers/issues/1761

        The position ids should be masked with the embedding object's padding index. Therefore, the
        first available non-padding position index is RobertaEmbeddings.padding_idx + 1
        """
        config = self.model_tester.prepare_config_and_inputs()[0]
510
511
        embeddings = RobertaEmbeddings(config=config)

512
        inputs_embeds = torch.empty(2, 4, 30)
513
514
515
516
517
518
519
520
        expected_single_positions = [
            0 + embeddings.padding_idx + 1,
            1 + embeddings.padding_idx + 1,
            2 + embeddings.padding_idx + 1,
            3 + embeddings.padding_idx + 1,
        ]
        expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
        position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
521
522
        self.assertEqual(position_ids.shape, expected_positions.shape)
        self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
523
524


Lysandre Debut's avatar
Lysandre Debut committed
525
@require_torch
526
class RobertaModelIntegrationTest(TestCasePlus):
527
    @slow
528
    def test_inference_masked_lm(self):
529
        model = RobertaForMaskedLM.from_pretrained("roberta-base")
530

531
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
532
533
        with torch.no_grad():
            output = model(input_ids)[0]
534
        expected_shape = torch.Size((1, 11, 50265))
535
        self.assertEqual(output.shape, expected_shape)
536
        # compare the actual values for a slice.
537
538
        expected_slice = torch.tensor(
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
539
        )
540
541
542
543
544
545

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
546

547
    @slow
548
    def test_inference_no_head(self):
549
        model = RobertaModel.from_pretrained("roberta-base")
550

551
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
552
553
        with torch.no_grad():
            output = model(input_ids)[0]
554
        # compare the actual values for a slice.
555
556
        expected_slice = torch.tensor(
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
557
        )
558
559
560
561
562
563

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
        # roberta.eval()
        # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach()

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
564

565
    @slow
566
    def test_inference_classification_head(self):
567
        model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
568

569
        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
570
571
        with torch.no_grad():
            output = model(input_ids)[0]
572
        expected_shape = torch.Size((1, 3))
573
        self.assertEqual(output.shape, expected_shape)
574
575
576
577
578
579
580
        expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])

        # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
        # roberta.eval()
        # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach()

        self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))