test_modeling_mpnet.py 10.3 KB
Newer Older
StillKeepTry's avatar
StillKeepTry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team, Microsoft Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from transformers import MPNetConfig, is_torch_available
StillKeepTry's avatar
StillKeepTry committed
20
21
from transformers.testing_utils import require_torch, slow, torch_device

Yih-Dar's avatar
Yih-Dar committed
22
23
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
24
from ...test_pipeline_mixin import PipelineTesterMixin
StillKeepTry's avatar
StillKeepTry committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


if is_torch_available():
    import torch

    from transformers import (
        MPNetForMaskedLM,
        MPNetForMultipleChoice,
        MPNetForQuestionAnswering,
        MPNetForSequenceClassification,
        MPNetForTokenClassification,
        MPNetModel,
    )


class MPNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=64,
52
        num_hidden_layers=2,
StillKeepTry's avatar
StillKeepTry committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        num_attention_heads=4,
        intermediate_size=64,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def get_large_model_config(self):
        return MPNetConfig.from_pretrained("microsoft/mpnet-base")

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

107
108
109
110
111
        config = self.get_config()
        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return MPNetConfig(
StillKeepTry's avatar
StillKeepTry committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_mpnet_model(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MPNetModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def create_and_check_mpnet_for_question_answering(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MPNetForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

    def create_and_check_mpnet_for_sequence_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = MPNetForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_mpnet_for_multiple_choice(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = MPNetForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        result = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            labels=choice_labels,
        )
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))

    def create_and_check_mpnet_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = MPNetForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
194
class MPNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
StillKeepTry's avatar
StillKeepTry committed
195
196
197
198
199
200
201
202
203
204
205
206
    all_model_classes = (
        (
            MPNetForMaskedLM,
            MPNetForMultipleChoice,
            MPNetForQuestionAnswering,
            MPNetForSequenceClassification,
            MPNetForTokenClassification,
            MPNetModel,
        )
        if is_torch_available()
        else ()
    )
207
208
209
210
211
212
213
214
215
216
217
218
    pipeline_model_mapping = (
        {
            "feature-extraction": MPNetModel,
            "fill-mask": MPNetForMaskedLM,
            "question-answering": MPNetForQuestionAnswering,
            "text-classification": MPNetForSequenceClassification,
            "token-classification": MPNetForTokenClassification,
            "zero-shot": MPNetForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
StillKeepTry's avatar
StillKeepTry committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    test_pruning = False
    test_resize_embeddings = True

    def setUp(self):
        self.model_tester = MPNetModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MPNetConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_mpnet_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpnet_model(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpnet_for_sequence_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpnet_for_multiple_choice(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpnet_for_token_classification(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mpnet_for_question_answering(*config_and_inputs)


@require_torch
class MPNetModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
        model = MPNetModel.from_pretrained("microsoft/mpnet-base")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]]
        )
        # compare the actual values for a slice.
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))