test_modeling_gptj.py 27.7 KB
Newer Older
Stella Biderman's avatar
Stella Biderman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import datetime
import unittest

from transformers import GPTJConfig, is_torch_available
21
from transformers.testing_utils import require_torch, slow, tooslow, torch_device
Stella Biderman's avatar
Stella Biderman committed
22

23
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
Stella Biderman's avatar
Stella Biderman committed
27
28
29
30
31
32
33
34
35


if is_torch_available():
    import torch

    from transformers import (
        GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
        AutoTokenizer,
        GPTJForCausalLM,
36
        GPTJForQuestionAnswering,
Stella Biderman's avatar
Stella Biderman committed
37
38
39
        GPTJForSequenceClassification,
        GPTJModel,
    )
40
41
42
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
else:
    is_torch_greater_or_equal_than_1_12 = False
Stella Biderman's avatar
Stella Biderman committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


class GPTJModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
Suraj Patil's avatar
Suraj Patil committed
58
        rotary_dim=4,
59
        num_hidden_layers=2,
Stella Biderman's avatar
Stella Biderman committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
Suraj Patil's avatar
Suraj Patil committed
82
        self.rotary_dim = rotary_dim
Stella Biderman's avatar
Stella Biderman committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
        self.pad_token_id = vocab_size - 1

    def get_large_model_config(self):
        return GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B")

103
    def prepare_config_and_inputs(self):
Stella Biderman's avatar
Stella Biderman committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

126
        config = self.get_config()
Stella Biderman's avatar
Stella Biderman committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

142
    def get_config(self):
Stella Biderman's avatar
Stella Biderman committed
143
144
145
146
147
148
149
150
151
152
153
154
        return GPTJConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
155
            use_cache=True,
Stella Biderman's avatar
Stella Biderman committed
156
157
158
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
Suraj Patil's avatar
Suraj Patil committed
159
            rotary_dim=self.rotary_dim,
Stella Biderman's avatar
Stella Biderman committed
160
161
        )

162
163
164
165
166
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

Stella Biderman's avatar
Stella Biderman committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)

    def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gptj_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gptj_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPTJModel(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
        )["last_hidden_state"]
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPTJForCausalLM(config)
        model.to(torch_device)
        model.eval()

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

333
334
335
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
Stella Biderman's avatar
Stella Biderman committed
336
        model = GPTJForCausalLM(config)
337
338
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
Stella Biderman's avatar
Stella Biderman committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        model.to(torch_device)

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict


@require_torch
367
class GPTJModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
368
369
370
371
372
    all_model_classes = (
        (GPTJModel, GPTJForCausalLM, GPTJForSequenceClassification, GPTJForQuestionAnswering)
        if is_torch_available()
        else ()
    )
Stella Biderman's avatar
Stella Biderman committed
373
    all_generative_model_classes = (GPTJForCausalLM,) if is_torch_available() else ()
374
375
376
377
378
379
380
381
382
383
384
    pipeline_model_mapping = (
        {
            "feature-extraction": GPTJModel,
            "question-answering": GPTJForQuestionAnswering,
            "text-classification": GPTJForSequenceClassification,
            "text-generation": GPTJForCausalLM,
            "zero-shot": GPTJForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
385
    fx_compatible = True
Stella Biderman's avatar
Stella Biderman committed
386
387
388
    test_pruning = False
    test_missing_keys = False
    test_model_parallel = False
389
    test_head_masking = False
Stella Biderman's avatar
Stella Biderman committed
390

391
392
393
394
395
396
397
398
399
400
401
402
    @unittest.skipIf(
        not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+."
    )
    def test_torch_fx(self):
        super().test_torch_fx()

    @unittest.skipIf(
        not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+."
    )
    def test_torch_fx_output_loss(self):
        super().test_torch_fx_output_loss()

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if (
            pipeline_test_casse_name == "QAPipelineTests"
            and tokenizer_name is not None
            and not tokenizer_name.endswith("Fast")
        ):
            # `QAPipelineTests` fails for a few models when the slower tokenizer are used.
            # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
            # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
            return True

        return False

Stella Biderman's avatar
Stella Biderman committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
        return inputs_dict

    def setUp(self):
        self.model_tester = GPTJModelTester(self)
        self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gptj_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model(*config_and_inputs)

    def test_gptj_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_past(*config_and_inputs)

    def test_gptj_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs)

    def test_gptj_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs)

    def test_gptj_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gptj_gradient_checkpointing(self):
452
453
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
Stella Biderman's avatar
Stella Biderman committed
454

455
    @tooslow
Stella Biderman's avatar
Stella Biderman committed
456
    def test_batch_generation(self):
457
        # Marked as @tooslow due to GPU OOM
458
        model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16)
Stella Biderman's avatar
Stella Biderman committed
459
        model.to(torch_device)
460
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
Stella Biderman's avatar
Stella Biderman committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
            token_type_ids=token_type_ids,
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little over a year old and has been diagnosed with a heart murmur",
            "Today, I鈥檓 going to talk about the most important thing in the",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_model_from_pretrained(self):
        for model_name in GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
518
            model = GPTJModel.from_pretrained(model_name, revision="float16", torch_dtype=torch.float16)
Stella Biderman's avatar
Stella Biderman committed
519
520
521
522
523
            self.assertIsNotNone(model)


@require_torch
class GPTJModelLanguageGenerationTest(unittest.TestCase):
524
    @tooslow
Stella Biderman's avatar
Stella Biderman committed
525
    def test_lm_generate_gptj(self):
526
        # Marked as @tooslow due to GPU OOM
Stella Biderman's avatar
Stella Biderman committed
527
        for checkpointing in [True, False]:
528
529
530
            model = GPTJForCausalLM.from_pretrained(
                "EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16
            )
531
532
533
534
            if checkpointing:
                model.gradient_checkpointing_enable()
            else:
                model.gradient_checkpointing_disable()
Stella Biderman's avatar
Stella Biderman committed
535
536
            model.to(torch_device)
            input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)  # The dog
537
538
539
540
            # fmt: off
            # The dog is a man's best friend. It is a loyal companion, and it is a friend
            expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545]
            # fmt: on
Stella Biderman's avatar
Stella Biderman committed
541
542
543
            output_ids = model.generate(input_ids, do_sample=False)
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

544
    @tooslow
Stella Biderman's avatar
Stella Biderman committed
545
    def test_gptj_sample(self):
546
547
548
        # Marked as @tooslow due to GPU OOM (issue #13676)
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
        model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16)
Stella Biderman's avatar
Stella Biderman committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)
        output_ids = model.generate(input_ids, do_sample=True)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        token_type_ids = tokenized.token_type_ids.to(torch_device)
        output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
        output_seq_tt = model.generate(
            input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
        )
        output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
        output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)

565
566
567
568
569
570
571
        if torch_device == "cuda":
            EXPECTED_OUTPUT_STR = (
                "Today is a nice day and I've already been enjoying it. I walked to work with my wife"
            )
        else:
            EXPECTED_OUTPUT_STR = "Today is a nice day and one of those days that feels a bit more alive. I am ready"

Stella Biderman's avatar
Stella Biderman committed
572
573
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
        self.assertTrue(
574
            all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs)))
Stella Biderman's avatar
Stella Biderman committed
575
576
577
578
        )  # token_type_ids should change output

    @slow
    def test_gptj_sample_max_time(self):
579
580
        tokenizer = AutoTokenizer.from_pretrained("anton-l/gpt-j-tiny-random")
        model = GPTJForCausalLM.from_pretrained("anton-l/gpt-j-tiny-random")
Stella Biderman's avatar
Stella Biderman committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)

        MAX_TIME = 0.5

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

    @tooslow
    def test_contrastive_search_gptj(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and "
            "research laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
        model = GPTJForCausalLM.from_pretrained(
            "EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16
        ).to(torch_device)
        input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)
        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom with offices in Mountain View, San Francisco, New York City, Paris, Tokyo, Seoul, "
                "Beijing, Singapore, Tel Aviv, Dublin, Sydney, and Melbourne.[1]\n\nContents\n\nIn 2010, Google's "
                "parent company, Alphabet, announced a $500 million investment in DeepMind, with the aim of creating "
                "a company that would apply deep learning to problems in healthcare, energy, transportation, and "
                "other areas.[2]\n\nOn April 23, 2014, Google announced that it had acquired DeepMind for $400 "
                "million in cash and stock.[3] The acquisition was seen as a way for Google to enter the "
                "fast-growing field of artificial intelligence (AI), which it had so far avoided due to concerns "
                'about ethical and social implications.[4] Google co-founder Sergey Brin said that he was "thrilled" '
                'to have acquired DeepMind, and that it would "help us push the boundaries of AI even further."'
                "[5]\n\nDeepMind's founders, Demis Hassabis and Mustafa Suleyman, were joined by a number of Google "
                "employees"
            ],
        )