distiller.py 25.5 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
VictorSanh's avatar
VictorSanh committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
VictorSanh's avatar
VictorSanh committed
15
16
""" The distiller to distil the student.
    Adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
19
import os
import math
VictorSanh's avatar
VictorSanh committed
20
import psutil
21
import time
VictorSanh's avatar
VictorSanh committed
22
23
24
25
26
27
from tqdm import trange, tqdm
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
28
from torch.optim import AdamW
VictorSanh's avatar
VictorSanh committed
29
30
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import RandomSampler, BatchSampler, DataLoader
VictorSanh's avatar
VictorSanh committed
31

32
33
34
35
36
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

37
from transformers import get_linear_schedule_with_warmup
VictorSanh's avatar
VictorSanh committed
38
39

from utils import logger
VictorSanh's avatar
VictorSanh committed
40
41
from lm_seqs_dataset import LmSeqsDataset
from grouped_batch_sampler import GroupedBatchSampler, create_lengths_groups
VictorSanh's avatar
VictorSanh committed
42

43

VictorSanh's avatar
VictorSanh committed
44
class Distiller:
45
46
47
48
    def __init__(
        self, params: dict, dataset: LmSeqsDataset, token_probs: torch.tensor, student: nn.Module, teacher: nn.Module
    ):
        logger.info("Initializing Distiller")
VictorSanh's avatar
VictorSanh committed
49
50
51
52
53
54
55
56
        self.params = params
        self.dump_path = params.dump_path
        self.multi_gpu = params.multi_gpu
        self.fp16 = params.fp16

        self.student = student
        self.teacher = teacher

VictorSanh's avatar
VictorSanh committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        self.student_config = student.config
        self.vocab_size = student.config.vocab_size

        if params.n_gpu <= 1:
            sampler = RandomSampler(dataset)
        else:
            sampler = DistributedSampler(dataset)

        if params.group_by_size:
            groups = create_lengths_groups(lengths=dataset.lengths, k=params.max_model_input_size)
            sampler = GroupedBatchSampler(sampler=sampler, group_ids=groups, batch_size=params.batch_size)
        else:
            sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False)

71
        self.dataloader = DataLoader(dataset=dataset, batch_sampler=sampler, collate_fn=dataset.batch_sequences)
VictorSanh's avatar
VictorSanh committed
72
73

        self.temperature = params.temperature
74
        assert self.temperature > 0.0
VictorSanh's avatar
VictorSanh committed
75
76
77

        self.alpha_ce = params.alpha_ce
        self.alpha_mlm = params.alpha_mlm
VictorSanh's avatar
VictorSanh committed
78
        self.alpha_clm = params.alpha_clm
VictorSanh's avatar
VictorSanh committed
79
        self.alpha_mse = params.alpha_mse
80
        self.alpha_cos = params.alpha_cos
VictorSanh's avatar
VictorSanh committed
81
82
83

        self.mlm = params.mlm
        if self.mlm:
84
            logger.info(f"Using MLM loss for LM step.")
VictorSanh's avatar
VictorSanh committed
85
86
87
88
            self.mlm_mask_prop = params.mlm_mask_prop
            assert 0.0 <= self.mlm_mask_prop <= 1.0
            assert params.word_mask + params.word_keep + params.word_rand == 1.0
            self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand])
89
90
            self.pred_probs = self.pred_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else self.pred_probs
            self.token_probs = token_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else token_probs
VictorSanh's avatar
VictorSanh committed
91
92
93
94
            if self.fp16:
                self.pred_probs = self.pred_probs.half()
                self.token_probs = self.token_probs.half()
        else:
95
            logger.info(f"Using CLM loss for LM step.")
VictorSanh's avatar
VictorSanh committed
96
97
98
99
100
101
102
103
104

        self.epoch = 0
        self.n_iter = 0
        self.n_total_iter = 0
        self.n_sequences_epoch = 0
        self.total_loss_epoch = 0
        self.last_loss = 0
        self.last_loss_ce = 0
        self.last_loss_mlm = 0
VictorSanh's avatar
VictorSanh committed
105
        self.last_loss_clm = 0
106
107
108
109
        if self.alpha_mse > 0.0:
            self.last_loss_mse = 0
        if self.alpha_cos > 0.0:
            self.last_loss_cos = 0
110
        self.last_log = 0
VictorSanh's avatar
VictorSanh committed
111

112
        self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
LysandreJik's avatar
LysandreJik committed
113
        self.lm_loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
114
115
116
117
        if self.alpha_mse > 0.0:
            self.mse_loss_fct = nn.MSELoss(reduction="sum")
        if self.alpha_cos > 0.0:
            self.cosine_loss_fct = nn.CosineEmbeddingLoss(reduction="mean")
VictorSanh's avatar
VictorSanh committed
118

119
        logger.info("--- Initializing model optimizer")
VictorSanh's avatar
VictorSanh committed
120
        assert params.gradient_accumulation_steps >= 1
VictorSanh's avatar
VictorSanh committed
121
        self.num_steps_epoch = len(self.dataloader)
122
123
124
        num_train_optimization_steps = (
            int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1
        )
VictorSanh's avatar
VictorSanh committed
125

126
        no_decay = ["bias", "LayerNorm.weight"]
VictorSanh's avatar
VictorSanh committed
127
        optimizer_grouped_parameters = [
128
129
130
131
132
133
134
135
136
137
138
139
            {
                "params": [
                    p for n, p in student.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad
                ],
                "weight_decay": params.weight_decay,
            },
            {
                "params": [
                    p for n, p in student.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad
                ],
                "weight_decay": 0.0,
            },
VictorSanh's avatar
VictorSanh committed
140
        ]
141
142
143
144
        logger.info(
            "------ Number of trainable parameters (student): %i"
            % sum([p.numel() for p in self.student.parameters() if p.requires_grad])
        )
VictorSanh's avatar
VictorSanh committed
145
        logger.info("------ Number of parameters (student): %i" % sum([p.numel() for p in self.student.parameters()]))
146
147
148
        self.optimizer = AdamW(
            optimizer_grouped_parameters, lr=params.learning_rate, eps=params.adam_epsilon, betas=(0.9, 0.98)
        )
149
150

        warmup_steps = math.ceil(num_train_optimization_steps * params.warmup_prop)
151
152
153
        self.scheduler = get_linear_schedule_with_warmup(
            self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_train_optimization_steps
        )
VictorSanh's avatar
VictorSanh committed
154
155
156
157
158
159
160

        if self.fp16:
            try:
                from apex import amp
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            logger.info(f"Using fp16 training: {self.params.fp16_opt_level} level")
161
162
163
            self.student, self.optimizer = amp.initialize(
                self.student, self.optimizer, opt_level=self.params.fp16_opt_level
            )
VictorSanh's avatar
VictorSanh committed
164
165
166
167
168
            self.teacher = self.teacher.half()

        if self.multi_gpu:
            if self.fp16:
                from apex.parallel import DistributedDataParallel
169

VictorSanh's avatar
VictorSanh committed
170
171
172
173
                logger.info("Using apex.parallel.DistributedDataParallel for distributed training.")
                self.student = DistributedDataParallel(self.student)
            else:
                from torch.nn.parallel import DistributedDataParallel
174

VictorSanh's avatar
VictorSanh committed
175
                logger.info("Using nn.parallel.DistributedDataParallel for distributed training.")
176
177
178
179
180
181
                self.student = DistributedDataParallel(
                    self.student,
                    device_ids=[params.local_rank],
                    output_device=params.local_rank,
                    find_unused_parameters=True,
                )
VictorSanh's avatar
VictorSanh committed
182
183
184

        self.is_master = params.is_master
        if self.is_master:
185
186
187
188
            logger.info("--- Initializing Tensorboard")
            self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, "log", "train"))
            self.tensorboard.add_text(tag="config/training", text_string=str(self.params), global_step=0)
            self.tensorboard.add_text(tag="config/student", text_string=str(self.student_config), global_step=0)
VictorSanh's avatar
VictorSanh committed
189

190
    def prepare_batch_mlm(self, batch):
VictorSanh's avatar
VictorSanh committed
191
192
193
194
195
196
197
198
199
200
201
202
203
        """
        Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the masked label for MLM.

        Input:
        ------
            batch: `Tuple`
                token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
                lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.

        Output:
        -------
            token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
            attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
thomwolf's avatar
thomwolf committed
204
            mlm_labels: `torch.tensor(bs, seq_length)` - The masked languge modeling labels. There is a -100 where there is nothing to predict.
VictorSanh's avatar
VictorSanh committed
205
206
207
208
209
        """
        token_ids, lengths = batch
        token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
        assert token_ids.size(0) == lengths.size(0)

210
        attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None]
VictorSanh's avatar
VictorSanh committed
211
212
213
214
215
216
217

        bs, max_seq_len = token_ids.size()
        mlm_labels = token_ids.new(token_ids.size()).copy_(token_ids)

        x_prob = self.token_probs[token_ids.flatten()]
        n_tgt = math.ceil(self.mlm_mask_prop * lengths.sum().item())
        tgt_ids = torch.multinomial(x_prob / x_prob.sum(), n_tgt, replacement=False)
218
219
220
        pred_mask = torch.zeros(
            bs * max_seq_len, dtype=torch.bool, device=token_ids.device
        )  # previously `dtype=torch.uint8`, cf pytorch 1.2.0 compatibility
VictorSanh's avatar
VictorSanh committed
221
222
223
        pred_mask[tgt_ids] = 1
        pred_mask = pred_mask.view(bs, max_seq_len)

224
        pred_mask[token_ids == self.params.special_tok_ids["pad_token"]] = 0
VictorSanh's avatar
VictorSanh committed
225
226
227
228
229
230
231
232

        # mask a number of words == 0 [8] (faster with fp16)
        if self.fp16:
            n1 = pred_mask.sum().item()
            if n1 > 8:
                pred_mask = pred_mask.view(-1)
                n2 = max(n1 % 8, 8 * (n1 // 8))
                if n2 != n1:
233
                    pred_mask[torch.nonzero(pred_mask).view(-1)[: n1 - n2]] = 0
VictorSanh's avatar
VictorSanh committed
234
235
236
237
                pred_mask = pred_mask.view(bs, max_seq_len)
                assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item()

        _token_ids_real = token_ids[pred_mask]
VictorSanh's avatar
VictorSanh committed
238
        _token_ids_rand = _token_ids_real.clone().random_(self.vocab_size)
239
        _token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids["mask_token"])
VictorSanh's avatar
VictorSanh committed
240
        probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True)
241
242
243
244
245
        _token_ids = (
            _token_ids_mask * (probs == 0).long()
            + _token_ids_real * (probs == 1).long()
            + _token_ids_rand * (probs == 2).long()
        )
VictorSanh's avatar
VictorSanh committed
246
247
        token_ids = token_ids.masked_scatter(pred_mask, _token_ids)

248
        mlm_labels[~pred_mask] = -100  # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility
VictorSanh's avatar
VictorSanh committed
249

VictorSanh's avatar
VictorSanh committed
250
251
252
        # sanity checks
        assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size

VictorSanh's avatar
VictorSanh committed
253
254
        return token_ids, attn_mask, mlm_labels

255
    def prepare_batch_clm(self, batch):
VictorSanh's avatar
VictorSanh committed
256
257
258
259
260
261
262
263
264
265
266
267
268
        """
        Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the labels for CLM.

        Input:
        ------
            batch: `Tuple`
                token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
                lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.

        Output:
        -------
            token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
            attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
thomwolf's avatar
thomwolf committed
269
            clm_labels: `torch.tensor(bs, seq_length)` - The causal languge modeling labels. There is a -100 where there is nothing to predict.
VictorSanh's avatar
VictorSanh committed
270
271
272
273
274
        """
        token_ids, lengths = batch
        token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
        assert token_ids.size(0) == lengths.size(0)

275
        attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None]
VictorSanh's avatar
VictorSanh committed
276
        clm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
277
        clm_labels[~attn_mask] = -100  # previously `clm_labels[1-attn_mask] = -1`, cf pytorch 1.2.0 compatibility
VictorSanh's avatar
VictorSanh committed
278
279
280
281
282
283

        # sanity checks
        assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size

        return token_ids, attn_mask, clm_labels

284
    def round_batch(self, x: torch.tensor, lengths: torch.tensor):
VictorSanh's avatar
VictorSanh committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        """
        For float16 only.
        Sub-sample sentences in a batch, and add padding, so that each dimension is a multiple of 8.

        Input:
        ------
            x: `torch.tensor(bs, seq_length)` - The token ids.
            lengths: `torch.tensor(bs, seq_length)` - The lengths of each of the sequence in the batch.

        Output:
        -------
            x:  `torch.tensor(new_bs, new_seq_length)` - The updated token ids.
            lengths: `torch.tensor(new_bs, new_seq_length)` - The updated lengths.
        """
        if not self.fp16 or len(lengths) < 8:
            return x, lengths

        # number of sentences == 0 [8]
        bs1 = len(lengths)
        bs2 = 8 * (bs1 // 8)
        assert bs2 > 0 and bs2 % 8 == 0
        if bs1 != bs2:
            idx = torch.randperm(bs1)[:bs2]
            lengths = lengths[idx]
            slen = lengths.max().item()
            x = x[idx, :slen]
        else:
            idx = None

        # sequence length == 0 [8]
        ml1 = x.size(1)
        if ml1 % 8 != 0:
            pad = 8 - (ml1 % 8)
            ml2 = ml1 + pad
VictorSanh's avatar
VictorSanh committed
319
            if self.mlm:
320
                pad_id = self.params.special_tok_ids["pad_token"]
VictorSanh's avatar
VictorSanh committed
321
            else:
322
                pad_id = self.params.special_tok_ids["unk_token"]
VictorSanh's avatar
VictorSanh committed
323
324
325
326
327
328
329
330
331
332
333
334
            padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id)
            x = torch.cat([x, padding_tensor], 1)
            assert x.size() == (bs2, ml2)

        assert x.size(0) % 8 == 0
        assert x.size(1) % 8 == 0
        return x, lengths

    def train(self):
        """
        The real training loop.
        """
335
336
        if self.is_master:
            logger.info("Starting training")
337
        self.last_log = time.time()
VictorSanh's avatar
VictorSanh committed
338
339
340
341
        self.student.train()
        self.teacher.eval()

        for _ in range(self.params.n_epoch):
342
343
            if self.is_master:
                logger.info(f"--- Starting epoch {self.epoch}/{self.params.n_epoch-1}")
344
345
            if self.multi_gpu:
                torch.distributed.barrier()
VictorSanh's avatar
VictorSanh committed
346

VictorSanh's avatar
VictorSanh committed
347
348
            iter_bar = tqdm(self.dataloader, desc="-Iter", disable=self.params.local_rank not in [-1, 0])
            for batch in iter_bar:
VictorSanh's avatar
VictorSanh committed
349
                if self.params.n_gpu > 0:
350
                    batch = tuple(t.to(f"cuda:{self.params.local_rank}") for t in batch)
VictorSanh's avatar
VictorSanh committed
351

VictorSanh's avatar
VictorSanh committed
352
353
354
355
356
                if self.mlm:
                    token_ids, attn_mask, lm_labels = self.prepare_batch_mlm(batch=batch)
                else:
                    token_ids, attn_mask, lm_labels = self.prepare_batch_clm(batch=batch)
                self.step(input_ids=token_ids, attention_mask=attn_mask, lm_labels=lm_labels)
VictorSanh's avatar
VictorSanh committed
357
358

                iter_bar.update()
359
360
361
                iter_bar.set_postfix(
                    {"Last_loss": f"{self.last_loss:.2f}", "Avg_cum_loss": f"{self.total_loss_epoch/self.n_iter:.2f}"}
                )
VictorSanh's avatar
VictorSanh committed
362
363
            iter_bar.close()

364
365
            if self.is_master:
                logger.info(f"--- Ending epoch {self.epoch}/{self.params.n_epoch-1}")
VictorSanh's avatar
VictorSanh committed
366
367
            self.end_epoch()

368
        if self.is_master:
369
370
371
372
373
            logger.info(f"Save very last checkpoint as `pytorch_model.bin`.")
            self.save_checkpoint(checkpoint_name=f"pytorch_model.bin")
            logger.info("Training is finished")

    def step(self, input_ids: torch.tensor, attention_mask: torch.tensor, lm_labels: torch.tensor):
VictorSanh's avatar
VictorSanh committed
374
375
376
377
378
379
380
381
        """
        One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation),
        and possibly a parameter update (depending on the gradient accumulation).

        Input:
        ------
        input_ids: `torch.tensor(bs, seq_length)` - The token ids.
        attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention.
VictorSanh's avatar
VictorSanh committed
382
        lm_labels: `torch.tensor(bs, seq_length)` - The language modeling labels (mlm labels for MLM and clm labels for CLM).
VictorSanh's avatar
VictorSanh committed
383
        """
VictorSanh's avatar
VictorSanh committed
384
        if self.mlm:
385
386
387
            s_logits, s_hidden_states = self.student(
                input_ids=input_ids, attention_mask=attention_mask
            )  # (bs, seq_length, voc_size)
VictorSanh's avatar
VictorSanh committed
388
            with torch.no_grad():
389
390
391
                t_logits, t_hidden_states = self.teacher(
                    input_ids=input_ids, attention_mask=attention_mask
                )  # (bs, seq_length, voc_size)
VictorSanh's avatar
VictorSanh committed
392
        else:
393
394
395
            s_logits, _, s_hidden_states = self.student(
                input_ids=input_ids, attention_mask=None
            )  # (bs, seq_length, voc_size)
VictorSanh's avatar
VictorSanh committed
396
            with torch.no_grad():
397
398
399
                t_logits, _, t_hidden_states = self.teacher(
                    input_ids=input_ids, attention_mask=None
                )  # (bs, seq_length, voc_size)
VictorSanh's avatar
VictorSanh committed
400
401
        assert s_logits.size() == t_logits.size()

402
403
        # https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
        # https://github.com/peterliht/knowledge-distillation-pytorch/issues/2
VictorSanh's avatar
VictorSanh committed
404
        if self.params.restrict_ce_to_mask:
405
            mask = (lm_labels > -1).unsqueeze(-1).expand_as(s_logits)  # (bs, seq_lenth, voc_size)
VictorSanh's avatar
VictorSanh committed
406
        else:
407
408
409
410
411
            mask = attention_mask.unsqueeze(-1).expand_as(s_logits)  # (bs, seq_lenth, voc_size)
        s_logits_slct = torch.masked_select(s_logits, mask)  # (bs * seq_length * voc_size) modulo the 1s in mask
        s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        t_logits_slct = torch.masked_select(t_logits, mask)  # (bs * seq_length * voc_size) modulo the 1s in mask
        t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
VictorSanh's avatar
VictorSanh committed
412
413
        assert t_logits_slct.size() == s_logits_slct.size()

414
415
416
417
418
419
420
421
        loss_ce = (
            self.ce_loss_fct(
                F.log_softmax(s_logits_slct / self.temperature, dim=-1),
                F.softmax(t_logits_slct / self.temperature, dim=-1),
            )
            * (self.temperature) ** 2
        )
        loss = self.alpha_ce * loss_ce
VictorSanh's avatar
VictorSanh committed
422

423
        if self.alpha_mlm > 0.0:
VictorSanh's avatar
VictorSanh committed
424
            loss_mlm = self.lm_loss_fct(s_logits.view(-1, s_logits.size(-1)), lm_labels.view(-1))
VictorSanh's avatar
VictorSanh committed
425
            loss += self.alpha_mlm * loss_mlm
426
        if self.alpha_clm > 0.0:
VictorSanh's avatar
VictorSanh committed
427
428
            shift_logits = s_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
429
            loss_clm = self.lm_loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
VictorSanh's avatar
VictorSanh committed
430
431
            loss += self.alpha_clm * loss_clm

432
433
434
435
        if self.alpha_mse > 0.0:
            loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct) / s_logits_slct.size(
                0
            )  # Reproducing batchmean reduction
VictorSanh's avatar
VictorSanh committed
436
            loss += self.alpha_mse * loss_mse
437
438
439
440
        if self.alpha_cos > 0.0:
            s_hidden_states = s_hidden_states[-1]  # (bs, seq_length, dim)
            t_hidden_states = t_hidden_states[-1]  # (bs, seq_length, dim)
            mask = attention_mask.unsqueeze(-1).expand_as(s_hidden_states)  # (bs, seq_length, dim)
441
442
            assert s_hidden_states.size() == t_hidden_states.size()
            dim = s_hidden_states.size(-1)
443
444
445
446
447
448
449

            s_hidden_states_slct = torch.masked_select(s_hidden_states, mask)  # (bs * seq_length * dim)
            s_hidden_states_slct = s_hidden_states_slct.view(-1, dim)  # (bs * seq_length, dim)
            t_hidden_states_slct = torch.masked_select(t_hidden_states, mask)  # (bs * seq_length * dim)
            t_hidden_states_slct = t_hidden_states_slct.view(-1, dim)  # (bs * seq_length, dim)

            target = s_hidden_states_slct.new(s_hidden_states_slct.size(0)).fill_(1)  # (bs * seq_length,)
450
451
            loss_cos = self.cosine_loss_fct(s_hidden_states_slct, t_hidden_states_slct, target)
            loss += self.alpha_cos * loss_cos
VictorSanh's avatar
VictorSanh committed
452
453
454
455

        self.total_loss_epoch += loss.item()
        self.last_loss = loss.item()
        self.last_loss_ce = loss_ce.item()
456
        if self.alpha_mlm > 0.0:
VictorSanh's avatar
VictorSanh committed
457
            self.last_loss_mlm = loss_mlm.item()
458
        if self.alpha_clm > 0.0:
VictorSanh's avatar
VictorSanh committed
459
            self.last_loss_clm = loss_clm.item()
460
        if self.alpha_mse > 0.0:
VictorSanh's avatar
VictorSanh committed
461
            self.last_loss_mse = loss_mse.item()
462
        if self.alpha_cos > 0.0:
463
            self.last_loss_cos = loss_cos.item()
VictorSanh's avatar
VictorSanh committed
464
465
466
467
468

        self.optimize(loss)

        self.n_sequences_epoch += input_ids.size(0)

469
    def optimize(self, loss):
VictorSanh's avatar
VictorSanh committed
470
471
472
473
474
475
476
        """
        Normalization on the loss (gradient accumulation or distributed training), followed by
        backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation).
        Also update the metrics for tensorboard.
        """
        # Check for NaN
        if (loss != loss).data.any():
477
            logger.error("NaN detected")
VictorSanh's avatar
VictorSanh committed
478
479
480
481
482
483
484
485
486
            exit()

        if self.multi_gpu:
            loss = loss.mean()
        if self.params.gradient_accumulation_steps > 1:
            loss = loss / self.params.gradient_accumulation_steps

        if self.fp16:
            from apex import amp
487

VictorSanh's avatar
VictorSanh committed
488
489
490
491
492
493
494
495
496
497
498
499
500
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

        self.iter()
        if self.n_iter % self.params.gradient_accumulation_steps == 0:
            if self.fp16:
                torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm)
            else:
                torch.nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm)
            self.optimizer.step()
            self.optimizer.zero_grad()
VictorSanh's avatar
VictorSanh committed
501
            self.scheduler.step()
VictorSanh's avatar
VictorSanh committed
502
503
504
505
506
507
508
509
510
511

    def iter(self):
        """
        Update global counts, write to tensorboard and save checkpoint.
        """
        self.n_iter += 1
        self.n_total_iter += 1

        if self.n_total_iter % self.params.log_interval == 0:
            self.log_tensorboard()
512
            self.last_log = time.time()
VictorSanh's avatar
VictorSanh committed
513
514
515
516
517
518
519
520
521
522
523
        if self.n_total_iter % self.params.checkpoint_interval == 0:
            self.save_checkpoint()

    def log_tensorboard(self):
        """
        Log into tensorboard. Only by the master process.
        """
        if not self.is_master:
            return

        for param_name, param in self.student.named_parameters():
524
525
526
527
528
529
            self.tensorboard.add_scalar(
                tag="parameter_mean/" + param_name, scalar_value=param.data.mean(), global_step=self.n_total_iter
            )
            self.tensorboard.add_scalar(
                tag="parameter_std/" + param_name, scalar_value=param.data.std(), global_step=self.n_total_iter
            )
VictorSanh's avatar
VictorSanh committed
530
531
            if param.grad is None:
                continue
532
533
534
535
536
537
538
539
540
541
542
543
            self.tensorboard.add_scalar(
                tag="grad_mean/" + param_name, scalar_value=param.grad.data.mean(), global_step=self.n_total_iter
            )
            self.tensorboard.add_scalar(
                tag="grad_std/" + param_name, scalar_value=param.grad.data.std(), global_step=self.n_total_iter
            )

        self.tensorboard.add_scalar(
            tag="losses/cum_avg_loss_epoch",
            scalar_value=self.total_loss_epoch / self.n_iter,
            global_step=self.n_total_iter,
        )
VictorSanh's avatar
VictorSanh committed
544
        self.tensorboard.add_scalar(tag="losses/loss", scalar_value=self.last_loss, global_step=self.n_total_iter)
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        self.tensorboard.add_scalar(
            tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter
        )
        if self.alpha_mlm > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter
            )
        if self.alpha_clm > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_clm", scalar_value=self.last_loss_clm, global_step=self.n_total_iter
            )
        if self.alpha_mse > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter
            )
        if self.alpha_cos > 0.0:
            self.tensorboard.add_scalar(
                tag="losses/loss_cos", scalar_value=self.last_loss_cos, global_step=self.n_total_iter
            )
        self.tensorboard.add_scalar(
            tag="learning_rate/lr", scalar_value=self.scheduler.get_lr()[0], global_step=self.n_total_iter
        )

        self.tensorboard.add_scalar(
            tag="global/memory_usage",
            scalar_value=psutil.virtual_memory()._asdict()["used"] / 1_000_000,
            global_step=self.n_total_iter,
        )
        self.tensorboard.add_scalar(
            tag="global/speed", scalar_value=time.time() - self.last_log, global_step=self.n_total_iter
        )
VictorSanh's avatar
VictorSanh committed
576
577
578
579
580
581

    def end_epoch(self):
        """
        Finally arrived at the end of epoch (full pass on dataset).
        Do some tensorboard logging and checkpoint saving.
        """
582
        logger.info(f"{self.n_sequences_epoch} sequences have been trained during this epoch.")
VictorSanh's avatar
VictorSanh committed
583
584

        if self.is_master:
585
586
587
588
            self.save_checkpoint(checkpoint_name=f"model_epoch_{self.epoch}.pth")
            self.tensorboard.add_scalar(
                tag="epoch/loss", scalar_value=self.total_loss_epoch / self.n_iter, global_step=self.epoch
            )
VictorSanh's avatar
VictorSanh committed
589
590
591
592
593
594

        self.epoch += 1
        self.n_sequences_epoch = 0
        self.n_iter = 0
        self.total_loss_epoch = 0

595
    def save_checkpoint(self, checkpoint_name: str = "checkpoint.pth"):
VictorSanh's avatar
VictorSanh committed
596
597
598
599
600
        """
        Save the current state. Only by the master process.
        """
        if not self.is_master:
            return
601
        mdl_to_save = self.student.module if hasattr(self.student, "module") else self.student
VictorSanh's avatar
VictorSanh committed
602
603
604
        mdl_to_save.config.save_pretrained(self.dump_path)
        state_dict = mdl_to_save.state_dict()
        torch.save(state_dict, os.path.join(self.dump_path, checkpoint_name))