run_openai_gpt.py 14.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT model fine-tuning script.
    Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py
    It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py

Ben Johnson's avatar
Ben Johnson committed
20
21
22
23
24
25
26
27
28
    This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset:
        python run_openai_gpt.py \
          --model_name openai-gpt \
          --do_train \
          --do_eval \
          --train_dataset $ROC_STORIES_DIR/cloze_test_val__spring2016\ -\ cloze_test_ALL_val.csv \
          --eval_dataset $ROC_STORIES_DIR/cloze_test_test__spring2016\ -\ cloze_test_ALL_test.csv \
          --output_dir ../log \
          --train_batch_size 16 \
thomwolf's avatar
thomwolf committed
29
30
31
32
33
34
35
36
37
38
"""
import argparse
import os
import csv
import random
import logging
from tqdm import tqdm, trange

import numpy as np
import torch
39
40
41
42
43
44
45
46
47
48
49
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset

from transformers import (
    OpenAIGPTDoubleHeadsModel,
    OpenAIGPTTokenizer,
    AdamW,
    cached_path,
    WEIGHTS_NAME,
    CONFIG_NAME,
    get_linear_schedule_with_warmup,
)
thomwolf's avatar
thomwolf committed
50
51

ROCSTORIES_URL = "https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
thomwolf's avatar
thomwolf committed
52

53
54
55
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
thomwolf's avatar
thomwolf committed
56
57
logger = logging.getLogger(__name__)

58

thomwolf's avatar
thomwolf committed
59
60
61
62
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

63

thomwolf's avatar
thomwolf committed
64
65
def load_rocstories_dataset(dataset_path):
    """ Output a list of tuples(story, 1st continuation, 2nd continuation, label) """
66
    with open(dataset_path, encoding="utf_8") as f:
thomwolf's avatar
thomwolf committed
67
68
        f = csv.reader(f)
        output = []
69
        next(f)  # skip the first line
thomwolf's avatar
thomwolf committed
70
        for line in tqdm(f):
71
            output.append((" ".join(line[1:5]), line[5], line[6], int(line[-1]) - 1))
thomwolf's avatar
thomwolf committed
72
73
    return output

74

thomwolf's avatar
thomwolf committed
75
76
77
78
79
def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token):
    """ Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label)

        To Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation:
        input_ids[batch, alternative, :] = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
thomwolf's avatar
thomwolf committed
80
81
82
83
    """
    tensor_datasets = []
    for dataset in encoded_datasets:
        n_batch = len(dataset)
thomwolf's avatar
thomwolf committed
84
        input_ids = np.zeros((n_batch, 2, input_len), dtype=np.int64)
thomwolf's avatar
thomwolf committed
85
        mc_token_ids = np.zeros((n_batch, 2), dtype=np.int64)
thomwolf's avatar
thomwolf committed
86
        lm_labels = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.int64)
thomwolf's avatar
thomwolf committed
87
        mc_labels = np.zeros((n_batch,), dtype=np.int64)
thomwolf's avatar
thomwolf committed
88
        for i, (story, cont1, cont2, mc_label), in enumerate(dataset):
thomwolf's avatar
thomwolf committed
89
90
            with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token]
            with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token]
91
92
            input_ids[i, 0, : len(with_cont1)] = with_cont1
            input_ids[i, 1, : len(with_cont2)] = with_cont2
thomwolf's avatar
thomwolf committed
93
94
            mc_token_ids[i, 0] = len(with_cont1) - 1
            mc_token_ids[i, 1] = len(with_cont2) - 1
95
96
            lm_labels[i, 0, : len(with_cont1)] = with_cont1
            lm_labels[i, 1, : len(with_cont2)] = with_cont2
thomwolf's avatar
thomwolf committed
97
            mc_labels[i] = mc_label
thomwolf's avatar
thomwolf committed
98
        all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels)
thomwolf's avatar
thomwolf committed
99
100
101
        tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs))
    return tensor_datasets

102

thomwolf's avatar
thomwolf committed
103
104
def main():
    parser = argparse.ArgumentParser()
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    parser.add_argument("--model_name", type=str, default="openai-gpt", help="pretrained model name")
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--train_dataset", type=str, default="")
    parser.add_argument("--eval_dataset", type=str, default="")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--num_train_epochs", type=int, default=3)
    parser.add_argument("--train_batch_size", type=int, default=8)
    parser.add_argument("--eval_batch_size", type=int, default=16)
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", type=int, default=1)
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training \
                        steps to perform. Override num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before\
                        performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", type=float, default=6.25e-5)
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument("--lr_schedule", type=str, default="warmup_linear")
    parser.add_argument("--weight_decay", type=float, default=0.01)
    parser.add_argument("--lm_coef", type=float, default=0.9)
    parser.add_argument("--n_valid", type=int, default=374)

    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
thomwolf's avatar
thomwolf committed
146
147
148
    args = parser.parse_args()
    print(args)

thomwolf's avatar
thomwolf committed
149
150
151
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
152

thomwolf's avatar
thomwolf committed
153
154
155
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
thomwolf's avatar
thomwolf committed
156

thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu {}".format(device, n_gpu))

thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
172
173
174
    # Load tokenizer and model
    # This loading functions also add new tokens and embeddings called `special tokens`
    # These new embeddings will be fine-tuned on the RocStories dataset
175
    special_tokens = ["_start_", "_delimiter_", "_classify_"]
thomwolf's avatar
thomwolf committed
176
177
178
179
180
    tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name)
    tokenizer.add_tokens(special_tokens)
    special_tokens_ids = tokenizer.convert_tokens_to_ids(special_tokens)
    model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name)
    model.resize_token_embeddings(len(tokenizer))
thomwolf's avatar
thomwolf committed
181
    model.to(device)
thomwolf's avatar
thomwolf committed
182
183

    # Load and encode the datasets
thomwolf's avatar
thomwolf committed
184
185
    if not args.train_dataset and not args.eval_dataset:
        roc_stories = cached_path(ROCSTORIES_URL)
186

thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
193
    def tokenize_and_encode(obj):
        """ Tokenize and encode a nested object """
        if isinstance(obj, str):
            return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj))
        elif isinstance(obj, int):
            return obj
        return list(tokenize_and_encode(o) for o in obj)
194

thomwolf's avatar
thomwolf committed
195
196
    logger.info("Encoding dataset...")
    train_dataset = load_rocstories_dataset(args.train_dataset)
thomwolf's avatar
thomwolf committed
197
198
199
    eval_dataset = load_rocstories_dataset(args.eval_dataset)
    datasets = (train_dataset, eval_dataset)
    encoded_datasets = tokenize_and_encode(datasets)
thomwolf's avatar
thomwolf committed
200

Catalin Voss's avatar
Catalin Voss committed
201
    # Compute the max input length for the Transformer
thomwolf's avatar
thomwolf committed
202
    max_length = model.config.n_positions // 2 - 2
203
204
205
206
207
    input_length = max(
        len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3
        for dataset in encoded_datasets
        for story, cont1, cont2, _ in dataset
    )
thomwolf's avatar
thomwolf committed
208
    input_length = min(input_length, model.config.n_positions)  # Max size of input for the pre-trained model
thomwolf's avatar
thomwolf committed
209
210

    # Prepare inputs tensors and dataloaders
thomwolf's avatar
thomwolf committed
211
    tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_length, *special_tokens_ids)
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
    train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1]

    train_data = TensorDataset(*train_tensor_dataset)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

    eval_data = TensorDataset(*eval_tensor_dataset)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Prepare optimizer
223
    if args.do_train:
224
225
        if args.max_steps > 0:
            t_total = args.max_steps
226
            args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
227
        else:
228
            t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
229

230
        param_optimizer = list(model.named_parameters())
231
        no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
232
        optimizer_grouped_parameters = [
233
234
235
236
237
238
            {
                "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
                "weight_decay": args.weight_decay,
            },
            {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
        ]
239
        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
240
241
242
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
        )
thomwolf's avatar
thomwolf committed
243
244

    if args.do_train:
thomwolf's avatar
thomwolf committed
245
        nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None
thomwolf's avatar
thomwolf committed
246
247
248
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
thomwolf's avatar
thomwolf committed
249
            nb_tr_steps = 0
thomwolf's avatar
thomwolf committed
250
251
            tqdm_bar = tqdm(train_dataloader, desc="Training")
            for step, batch in enumerate(tqdm_bar):
thomwolf's avatar
thomwolf committed
252
                batch = tuple(t.to(device) for t in batch)
thomwolf's avatar
thomwolf committed
253
                input_ids, mc_token_ids, lm_labels, mc_labels = batch
254
                losses = model(input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels)
thomwolf's avatar
thomwolf committed
255
256
                loss = args.lm_coef * losses[0] + losses[1]
                loss.backward()
257
                scheduler.step()
thomwolf's avatar
thomwolf committed
258
                optimizer.step()
259
                optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
260
                tr_loss += loss.item()
261
262
263
                exp_average_loss = (
                    loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
                )
thomwolf's avatar
thomwolf committed
264
                nb_tr_steps += 1
265
                tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0])
thomwolf's avatar
thomwolf committed
266
267
268

    # Save a trained model
    if args.do_train:
269
        # Save a trained model, configuration and tokenizer
270
        model_to_save = model.module if hasattr(model, "module") else model  # Only save the model itself
271
272
273
274
275

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

thomwolf's avatar
thomwolf committed
276
        torch.save(model_to_save.state_dict(), output_model_file)
277
278
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)
thomwolf's avatar
thomwolf committed
279

280
281
282
        # Load a trained model and vocabulary that you have fine-tuned
        model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir)
        tokenizer = OpenAIGPTTokenizer.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
283
        model.to(device)
thomwolf's avatar
thomwolf committed
284
285
286
287
288
289
290

    if args.do_eval:
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
thomwolf's avatar
thomwolf committed
291
            input_ids, mc_token_ids, lm_labels, mc_labels = batch
thomwolf's avatar
thomwolf committed
292
            with torch.no_grad():
293
294
295
                _, mc_loss, _, mc_logits = model(
                    input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels
                )
thomwolf's avatar
thomwolf committed
296
297

            mc_logits = mc_logits.detach().cpu().numpy()
298
            mc_labels = mc_labels.to("cpu").numpy()
thomwolf's avatar
thomwolf committed
299
300
301
302
303
304
305
306
307
308
            tmp_eval_accuracy = accuracy(mc_logits, mc_labels)

            eval_loss += mc_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
309
310
        train_loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss}
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

319
320

if __name__ == "__main__":
thomwolf's avatar
thomwolf committed
321
    main()