test_modeling_encoder_decoder.py 34.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
22

23
from .test_modeling_bert import BertModelTester
24
from .test_modeling_bert_generation import BertGenerationEncoderTester
25
from .test_modeling_common import ids_tensor
26
from .test_modeling_gpt2 import GPT2ModelTester
Weizhen's avatar
Weizhen committed
27
from .test_modeling_prophetnet import ProphetNetStandaloneDecoderModelTester
28
from .test_modeling_roberta import RobertaModelTester
29
30
31


if is_torch_available():
32
33
34
    import numpy as np
    import torch

35
    from transformers import (
36
37
38
        AutoTokenizer,
        BertGenerationDecoder,
        BertGenerationEncoder,
39
        BertLMHeadModel,
40
        BertModel,
41
        BertTokenizer,
42
43
        EncoderDecoderConfig,
        EncoderDecoderModel,
44
        GPT2LMHeadModel,
Weizhen's avatar
Weizhen committed
45
        ProphetNetForCausalLM,
46
        RobertaForCausalLM,
47
        RobertaModel,
48
    )
Weizhen's avatar
Weizhen committed
49
    from transformers.modeling_outputs import BaseModelOutput
50
51
52


@require_torch
53
54
55
class EncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
        pass
56

57
58
59
60
61
    def prepare_config_and_inputs(self):
        pass

    def get_pretrained_model(self):
        pass
62

63
    def check_encoder_decoder_model_from_pretrained_configs(
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = EncoderDecoderModel(encoder_decoder_config)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Weizhen's avatar
Weizhen committed
88
            return_dict=True,
89
90
        )

Weizhen's avatar
Weizhen committed
91
92
93
94
95
96
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
97

98
    def check_encoder_decoder_model(
99
100
101
102
103
104
105
106
107
108
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
109
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
110
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
111
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
112
        self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
113
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)
114
115
116
117
118
119
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Weizhen's avatar
Weizhen committed
120
121
122
123
124
125
126
            return_dict=True,
        )
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
127
128
        )

Weizhen's avatar
Weizhen committed
129
        encoder_outputs = BaseModelOutput(last_hidden_state=encoder_hidden_states)
130
131
132
133
134
        outputs_encoder_decoder = enc_dec_model(
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Weizhen's avatar
Weizhen committed
135
            return_dict=True,
136
137
        )

Weizhen's avatar
Weizhen committed
138
139
140
141
142
143
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
144

145
    def check_encoder_decoder_model_from_pretrained(
146
147
148
149
150
151
152
153
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
154
        return_dict,
155
156
        **kwargs
    ):
157
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
158
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
159
160
161
162
163
164
165
        enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Weizhen's avatar
Weizhen committed
166
            return_dict=True,
167
168
        )

Weizhen's avatar
Weizhen committed
169
170
171
172
173
174
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
175

176
    def check_save_and_load(
177
178
179
180
181
182
183
184
185
186
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
187
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                enc_dec_model.save_pretrained(tmpdirname)
                EncoderDecoderModel.from_pretrained(tmpdirname)

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

216
    def check_save_and_load_encoder_decoder_model(
217
218
219
220
221
222
223
224
225
226
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
227
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
                enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
                enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
                EncoderDecoderModel.from_encoder_decoder_pretrained(
                    encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
                    decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
                )

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

260
    def check_encoder_decoder_model_labels(
261
262
263
264
265
266
267
268
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
269
        labels,
270
271
        **kwargs
    ):
272
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
273
274
275
276
277
278
279
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
280
            labels=labels,
Weizhen's avatar
Weizhen committed
281
            return_dict=True,
282
283
        )

Weizhen's avatar
Weizhen committed
284
        loss = outputs_encoder_decoder["loss"]
285
        # check that backprop works
Weizhen's avatar
Weizhen committed
286
        loss.backward()
287

Weizhen's avatar
Weizhen committed
288
289
290
291
292
293
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
            return_dict=True,
        )

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

        self.assertListEqual(
            list(encoder_attentions[0].shape[-3:]),
            [config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]],
        )

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertListEqual(
            list(decoder_attentions[0].shape[-3:]),
            [decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]],
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = input_ids.shape[-1] * (
            1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
        )
        self.assertListEqual(
            list(cross_attentions[0].shape[-3:]),
            [decoder_config.num_attention_heads, cross_attention_input_seq_len, decoder_input_ids.shape[-1]],
        )

351
352
    def check_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
353
354
355
356
357
358
359
360
361
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(generated_output.shape, (input_ids.shape[0],) + (decoder_config.max_length,))

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    def create_and_check_encoder_decoder_shared_weights(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels,
        **kwargs
    ):
        torch.manual_seed(0)
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        model.to(torch_device)
        model.eval()
        # load state dict copies weights but does not tie them
        decoder_state_dict = model.decoder._modules[model.decoder.base_model_prefix].state_dict()
        model.encoder.load_state_dict(decoder_state_dict, strict=False)

        torch.manual_seed(0)
        tied_encoder_model, tied_decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        config = EncoderDecoderConfig.from_encoder_decoder_configs(
            tied_encoder_model.config, tied_decoder_model.config, tie_encoder_decoder=True
        )
        tied_model = EncoderDecoderModel(encoder=tied_encoder_model, decoder=tied_decoder_model, config=config)
        tied_model.to(torch_device)
        tied_model.eval()

        model_result = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        tied_model_result = tied_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        # check that models has less parameters
        self.assertLess(sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()))
        random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

        # check that outputs are equal
        self.assertTrue(
            torch.allclose(
                model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
            )
        )

        # check that outputs after saving and loading are equal
        with tempfile.TemporaryDirectory() as tmpdirname:
            tied_model.save_pretrained(tmpdirname)
            tied_model = EncoderDecoderModel.from_pretrained(tmpdirname)
            tied_model.to(torch_device)
            tied_model.eval()

            # check that models has less parameters
            self.assertLess(
                sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
            )
            random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

            tied_model_result = tied_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )

            # check that outputs are equal
            self.assertTrue(
                torch.allclose(
                    model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
                )
            )

444
445
446
    def test_encoder_decoder_model(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model(**input_ids_dict)
447

448
449
450
    def test_encoder_decoder_model_from_pretrained_configs(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
451

452
453
    def test_encoder_decoder_model_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
454
455
456
457
458
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)
459
460

    def test_save_and_load_from_pretrained(self):
461
462
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**input_ids_dict)
463
464

    def test_save_and_load_from_encoder_decoder_pretrained(self):
465
466
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
467

468
469
470
    def test_encoder_decoder_model_labels(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_labels(**input_ids_dict)
471

472
473
474
475
    def test_encoder_decoder_model_output_attentions(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_output_attentions(**input_ids_dict)

476
477
478
    def test_encoder_decoder_model_generate(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**input_ids_dict)
479

480
481
482
483
    def test_encoder_decoder_model_shared_weights(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.create_and_check_encoder_decoder_shared_weights(**input_ids_dict)

484
    @slow
485
486
    def test_real_model_save_load_from_pretrained(self):
        model_2 = self.get_pretrained_model()
487
488
489
490
491
        model_2.to(torch_device)
        input_ids = ids_tensor([13, 5], model_2.config.encoder.vocab_size)
        decoder_input_ids = ids_tensor([13, 1], model_2.config.encoder.vocab_size)
        attention_mask = ids_tensor([13, 5], vocab_size=2)
        with torch.no_grad():
Lysandre's avatar
Lysandre committed
492
493
494
495
496
            outputs = model_2(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
            )
497
498
499
500
501
502
503
504
505
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmp_dirname:
                model_2.save_pretrained(tmp_dirname)
                model_1 = EncoderDecoderModel.from_pretrained(tmp_dirname)
                model_1.to(torch_device)

                after_outputs = model_1(
Lysandre's avatar
Lysandre committed
506
507
508
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
509
510
511
512
513
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
514
515


Weizhen's avatar
Weizhen committed
516
@require_torch
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
class BertEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "bert-base-cased")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = BertLMHeadModel(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = BertModelTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    @slow
    def test_bert2bert_summarization(self):
        model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
        model.to(torch_device)
        tokenizer = BertTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")

        ARTICLE = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents."""

        EXPECTED_SUMMARY = """sae was founded in 1856, five years before the civil war. the fraternity has had to work hard to change recently. the university of oklahoma president says the university's affiliation with the fraternity is permanently done. the sae has had a string of members in recent months."""

        input_ids = tokenizer(ARTICLE, return_tensors="pt").input_ids.to(torch_device)
        output_ids = model.generate(input_ids)
        summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        self.assertEqual(summary, EXPECTED_SUMMARY)

584

Weizhen's avatar
Weizhen committed
585
@require_torch
Patrick von Platen's avatar
Patrick von Platen committed
586
class BertGenerationEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained(
            "google/bert_for_seq_generation_L-24_bbc_encoder", "google/bert_for_seq_generation_L-24_bbc_encoder"
        )

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertGenerationEncoder(config)
        decoder_model = BertGenerationDecoder(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = BertGenerationEncoderTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            input_mask,
            token_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_input_mask,
            decoder_token_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_token_labels": decoder_token_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    @slow
    def test_roberta2roberta_summarization(self):
        model = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_bbc")
        model.to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_bbc")

        ARTICLE = """The problem is affecting people using the older versions of the PlayStation 3, called the "Fat" model.The problem isn't affecting the newer PS3 Slim systems that have been on sale since September last year.Sony have also said they are aiming to have the problem fixed shortly but is advising some users to avoid using their console for the time being."We hope to resolve this problem within the next 24 hours," a statement reads. "In the meantime, if you have a model other than the new slim PS3, we advise that you do not use your PS3 system, as doing so may result in errors in some functionality, such as recording obtained trophies, and not being able to restore certain data."We believe we have identified that this problem is being caused by a bug in the clock functionality incorporated in the system."The PlayStation Network is used by millions of people around the world.It allows users to play their friends at games like Fifa over the internet and also do things like download software or visit online stores."""

        EXPECTED_SUMMARY = """Sony has said that a bug in its PlayStation 3 console is preventing them from using the machine as a computer."""

        input_ids = tokenizer(ARTICLE, return_tensors="pt").input_ids.to(torch_device)
        output_ids = model.generate(input_ids)
        summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        self.assertEqual(summary, EXPECTED_SUMMARY)


Weizhen's avatar
Weizhen committed
647
@require_torch
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
class RoBertaEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = RobertaModel(config)
        decoder_model = RobertaForCausalLM(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = RobertaModelTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")
698
699


Weizhen's avatar
Weizhen committed
700
@require_torch
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
class GPT2EncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = GPT2LMHeadModel(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = BertModelTester(self, batch_size=13)
        model_tester_decoder = GPT2ModelTester(self, batch_size=13)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_input_mask,
            decoder_head_mask,
            decoder_token_type_ids,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2")
755
756
757

    def test_encoder_decoder_model_shared_weights(self):
        pass
Weizhen's avatar
Weizhen committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813


@require_torch
class ProphetNetEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = ProphetNetForCausalLM(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = BertModelTester(self, batch_size=13)
        model_tester_decoder = ProphetNetStandaloneDecoderModelTester(
            self, batch_size=13, hidden_size=32, max_position_embeddings=512
        )
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_attention_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            lm_labels,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": lm_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained(
            "bert-large-uncased", "patrickvonplaten/prophetnet-decoder-clm-large-uncased"
        )

    def test_encoder_decoder_model_shared_weights(self):
        pass