"...targets/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "8398fb196712221173b8e459b0d88945a4cdf1ba"
test_modeling_t5.py 8.18 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

thomwolf's avatar
thomwolf committed
19
20
from transformers import is_torch_available

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25

thomwolf's avatar
thomwolf committed
26
if is_torch_available():
27
    from transformers import T5Config, T5Model, T5ForConditionalGeneration
thomwolf's avatar
thomwolf committed
28
29
30
    from transformers.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP


thomwolf's avatar
thomwolf committed
31
@require_torch
32
class T5ModelTest(ModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
33

34
35
    all_model_classes = (T5Model, T5ForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (T5ForConditionalGeneration,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
36
37
38
39
40
41
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    is_encoder_decoder = True

    class T5ModelTester(object):
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        def __init__(
            self,
            parent,
            batch_size=13,
            encoder_seq_length=7,
            decoder_seq_length=9,
            is_training=True,
            use_attention_mask=True,
            use_labels=True,
            vocab_size=99,
            n_positions=14,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            d_ff=37,
            relative_attention_num_buckets=8,
            dropout_rate=0.1,
            initializer_factor=0.002,
60
61
            eos_token_ids=[1],
            pad_token_id=0,
62
63
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
64
65
            self.parent = parent
            self.batch_size = batch_size
thomwolf's avatar
thomwolf committed
66
67
            self.encoder_seq_length = encoder_seq_length
            self.decoder_seq_length = decoder_seq_length
thomwolf's avatar
thomwolf committed
68
            self.is_training = is_training
thomwolf's avatar
thomwolf committed
69
            self.use_attention_mask = use_attention_mask
thomwolf's avatar
thomwolf committed
70
71
72
73
74
75
76
77
78
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_positions = n_positions
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.d_ff = d_ff
            self.relative_attention_num_buckets = relative_attention_num_buckets
            self.dropout_rate = dropout_rate
79
            self.initializer_factor = initializer_factor
thomwolf's avatar
thomwolf committed
80
            self.scope = scope
81
82
            self.eos_token_ids = eos_token_ids
            self.pad_token_id = pad_token_id
thomwolf's avatar
thomwolf committed
83
84

        def prepare_config_and_inputs(self):
85
            input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
86
            decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
87

88
            attention_mask = None
thomwolf's avatar
thomwolf committed
89
90
            decoder_attention_mask = None
            if self.use_attention_mask:
91
                attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
92
                decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
93

94
            lm_labels = None
thomwolf's avatar
thomwolf committed
95
            if self.use_labels:
96
                lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
97
98

            config = T5Config(
thomwolf's avatar
thomwolf committed
99
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
100
101
102
                n_positions=self.n_positions,
                d_model=self.hidden_size,
                d_ff=self.d_ff,
103
                d_kv=self.hidden_size // self.num_attention_heads,
thomwolf's avatar
thomwolf committed
104
105
106
107
                num_layers=self.num_hidden_layers,
                num_heads=self.num_attention_heads,
                relative_attention_num_buckets=self.relative_attention_num_buckets,
                dropout_rate=self.dropout_rate,
108
                initializer_factor=self.initializer_factor,
109
110
111
                eos_token_ids=self.eos_token_ids,
                bos_token_id=self.pad_token_id,
                pad_token_id=self.pad_token_id,
112
113
114
115
            )

            return (
                config,
116
                input_ids,
117
                decoder_input_ids,
118
                attention_mask,
119
                decoder_attention_mask,
120
                lm_labels,
121
            )
thomwolf's avatar
thomwolf committed
122
123

        def check_loss_output(self, result):
124
125
126
            self.parent.assertListEqual(list(result["loss"].size()), [])

        def create_and_check_t5_model(
127
            self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
128
        ):
thomwolf's avatar
thomwolf committed
129
            model = T5Model(config=config)
130
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
131
            model.eval()
132
            decoder_output, encoder_output = model(
133
                input_ids=input_ids,
134
                decoder_input_ids=decoder_input_ids,
135
                attention_mask=attention_mask,
136
137
                decoder_attention_mask=decoder_attention_mask,
            )
138
            decoder_output, encoder_output = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144

            result = {
                "encoder_output": encoder_output,
                "decoder_output": decoder_output,
            }
            self.parent.assertListEqual(
145
146
                list(result["encoder_output"].size()), [self.batch_size, self.encoder_seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
147
            self.parent.assertListEqual(
148
149
150
151
                list(result["decoder_output"].size()), [self.batch_size, self.decoder_seq_length, self.hidden_size]
            )

        def create_and_check_t5_with_lm_head(
152
            self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
153
        ):
154
            model = T5ForConditionalGeneration(config=config)
155
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
156
            model.eval()
157
            outputs = model(
158
                input_ids=input_ids,
159
160
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
161
                lm_labels=lm_labels,
162
            )
Sam Shleifer's avatar
Sam Shleifer committed
163
164
            loss, prediction_scores, encoder_features = outputs
            self.parent.assertEqual(len(outputs), 3)
thomwolf's avatar
thomwolf committed
165
166
167
168
169
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
170
171
                list(result["prediction_scores"].size()), [self.batch_size, self.decoder_seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
172
173
174
175
            self.check_loss_output(result)

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
176
177
            (
                config,
178
                input_ids,
179
                decoder_input_ids,
180
                attention_mask,
181
                decoder_attention_mask,
182
                lm_labels,
183
            ) = config_and_inputs
184

185
            inputs_dict = {
186
187
                "input_ids": input_ids,
                "attention_mask": attention_mask,
188
189
190
                "decoder_input_ids": decoder_input_ids,
                "decoder_attention_mask": decoder_attention_mask,
            }
thomwolf's avatar
thomwolf committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
            return config, inputs_dict

    def setUp(self):
        self.model_tester = T5ModelTest.T5ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_t5_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_t5_model(*config_and_inputs)

    def test_with_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs)

thomwolf's avatar
thomwolf committed
208
    @slow
thomwolf's avatar
thomwolf committed
209
210
    def test_model_from_pretrained(self):
        for model_name in list(T5_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
211
            model = T5Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
212
            self.assertIsNotNone(model)