test_modeling_encoder_decoder.py 47.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
22

23
from .test_modeling_bart import BartStandaloneDecoderModelTester
24
from .test_modeling_bert import BertModelTester
25
from .test_modeling_bert_generation import BertGenerationEncoderTester
26
from .test_modeling_common import ids_tensor
27
from .test_modeling_gpt2 import GPT2ModelTester
Weizhen's avatar
Weizhen committed
28
from .test_modeling_prophetnet import ProphetNetStandaloneDecoderModelTester
29
from .test_modeling_roberta import RobertaModelTester
30
31
32


if is_torch_available():
33
34
35
    import numpy as np
    import torch

36
    from transformers import (
37
        AutoConfig,
38
        AutoTokenizer,
39
        BartForCausalLM,
40
41
        BertGenerationDecoder,
        BertGenerationEncoder,
42
        BertLMHeadModel,
43
        BertModel,
44
        BertTokenizer,
45
46
        EncoderDecoderConfig,
        EncoderDecoderModel,
47
        GPT2LMHeadModel,
Weizhen's avatar
Weizhen committed
48
        ProphetNetForCausalLM,
49
        RobertaForCausalLM,
50
        RobertaModel,
51
    )
Weizhen's avatar
Weizhen committed
52
    from transformers.modeling_outputs import BaseModelOutput
53
54
55


@require_torch
56
57
class EncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
58
        raise NotImplementedError
59

60
    def prepare_config_and_inputs(self):
61
        raise NotImplementedError
62
63

    def get_pretrained_model(self):
64
        raise NotImplementedError
65

66
    def check_encoder_decoder_model_from_pretrained_configs(
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = EncoderDecoderModel(encoder_decoder_config)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

Weizhen's avatar
Weizhen committed
93
94
95
96
97
98
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
99

100
    def check_encoder_decoder_model(
101
102
103
104
105
106
107
108
109
110
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
111
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
112
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
113
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
114
        self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
115
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)
116
117
118
119
120
121
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Weizhen's avatar
Weizhen committed
122
123
124
125
126
127
        )
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
128
129
        )

Weizhen's avatar
Weizhen committed
130
        encoder_outputs = BaseModelOutput(last_hidden_state=encoder_hidden_states)
131
132
133
134
135
136
137
        outputs_encoder_decoder = enc_dec_model(
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

Weizhen's avatar
Weizhen committed
138
139
140
141
142
143
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def check_encoder_decoder_model_from_pretrained_using_model_paths(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
            encoder_model.save_pretrained(encoder_tmp_dirname)
            decoder_model.save_pretrained(decoder_tmp_dirname)
            model_kwargs = {"encoder_hidden_dropout_prob": 0.0}

            # BartConfig has no hidden_dropout_prob.
            if not hasattr(decoder_config, "hidden_dropout_prob"):
                model_kwargs["decoder_activation_function"] = "gelu"
            else:
                model_kwargs["decoder_hidden_dropout_prob"] = 0.0

            enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(
                encoder_tmp_dirname, decoder_tmp_dirname, **model_kwargs
            )
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            return_dict=True,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )

187
    def check_encoder_decoder_model_from_pretrained(
188
189
190
191
192
193
194
195
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
196
        return_dict,
197
198
        **kwargs
    ):
199
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
200
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
201
202
203
204
205
206
207
        enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Weizhen's avatar
Weizhen committed
208
            return_dict=True,
209
210
        )

Weizhen's avatar
Weizhen committed
211
212
213
214
215
216
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
217

218
    def check_save_and_load(
219
220
221
222
223
224
225
226
227
228
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
229
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                enc_dec_model.save_pretrained(tmpdirname)
245
                enc_dec_model = EncoderDecoderModel.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
246
                enc_dec_model.to(torch_device)
247
248
249
250
251
252
253
254
255
256
257
258

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

259
    def check_save_and_load_encoder_decoder_model(
260
261
262
263
264
265
266
267
268
269
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
270
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
                enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
                enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
287
                enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(
288
289
290
                    encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
                    decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
                )
Patrick von Platen's avatar
Patrick von Platen committed
291
                enc_dec_model.to(torch_device)
292
293
294
295
296
297
298
299
300
301
302
303

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

304
    def check_encoder_decoder_model_labels(
305
306
307
308
309
310
311
312
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
313
        labels,
314
315
        **kwargs
    ):
316
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
317
318
319
320
321
322
323
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
324
            labels=labels,
325
326
        )

Weizhen's avatar
Weizhen committed
327
        loss = outputs_encoder_decoder["loss"]
328
        # check that backprop works
Weizhen's avatar
Weizhen committed
329
        loss.backward()
330

Weizhen's avatar
Weizhen committed
331
332
333
334
335
336
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        self.assertEqual(
            outputs_encoder_decoder["encoder_last_hidden_state"].shape, (input_ids.shape + (config.hidden_size,))
        )
337

338
339
340
341
342
343
344
345
346
347
348
349
    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels,
        **kwargs
    ):
350
351
352
        # make the decoder inputs a different shape from the encoder inputs to harden the test
        decoder_input_ids = decoder_input_ids[:, :-1]
        decoder_attention_mask = decoder_attention_mask[:, :-1]
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
        )

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

367
368
        self.assertEqual(
            encoder_attentions[0].shape[-3:], (config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1])
369
370
371
372
373
374
375
376
377
378
        )

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

379
380
381
        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
382
383
384
385
386
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

387
        cross_attention_input_seq_len = decoder_input_ids.shape[-1] * (
388
389
            1 + (decoder_config.ngram if hasattr(decoder_config, "ngram") else 0)
        )
390
391
392
        self.assertEqual(
            cross_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len, input_ids.shape[-1]),
393
394
        )

395
396
    def check_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
397
398
399
400
401
402
403
404
405
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(generated_output.shape, (input_ids.shape[0],) + (decoder_config.max_length,))

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    def create_and_check_encoder_decoder_shared_weights(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels,
        **kwargs
    ):
        torch.manual_seed(0)
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        model.to(torch_device)
        model.eval()
        # load state dict copies weights but does not tie them
        decoder_state_dict = model.decoder._modules[model.decoder.base_model_prefix].state_dict()
        model.encoder.load_state_dict(decoder_state_dict, strict=False)

        torch.manual_seed(0)
        tied_encoder_model, tied_decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        config = EncoderDecoderConfig.from_encoder_decoder_configs(
            tied_encoder_model.config, tied_decoder_model.config, tie_encoder_decoder=True
        )
        tied_model = EncoderDecoderModel(encoder=tied_encoder_model, decoder=tied_decoder_model, config=config)
        tied_model.to(torch_device)
        tied_model.eval()

        model_result = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        tied_model_result = tied_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        # check that models has less parameters
        self.assertLess(sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()))
        random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

        # check that outputs are equal
        self.assertTrue(
            torch.allclose(
                model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
            )
        )

        # check that outputs after saving and loading are equal
        with tempfile.TemporaryDirectory() as tmpdirname:
            tied_model.save_pretrained(tmpdirname)
            tied_model = EncoderDecoderModel.from_pretrained(tmpdirname)
            tied_model.to(torch_device)
            tied_model.eval()

            # check that models has less parameters
            self.assertLess(
                sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
            )
            random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

            tied_model_result = tied_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )

            # check that outputs are equal
            self.assertTrue(
                torch.allclose(
                    model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
                )
            )

488
489
490
    def test_encoder_decoder_model(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model(**input_ids_dict)
491

492
493
494
    def test_encoder_decoder_model_from_pretrained_configs(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
495

496
497
    def test_encoder_decoder_model_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
498
499
500
501
502
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)
503

504
505
506
507
    def test_encoder_decoder_model_from_pretrained_using_model_paths(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_using_model_paths(**input_ids_dict, return_dict=False)

508
    def test_save_and_load_from_pretrained(self):
509
510
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**input_ids_dict)
511
512

    def test_save_and_load_from_encoder_decoder_pretrained(self):
513
514
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
515

516
517
518
    def test_encoder_decoder_model_labels(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_labels(**input_ids_dict)
519

520
521
522
523
    def test_encoder_decoder_model_output_attentions(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_output_attentions(**input_ids_dict)

524
525
526
    def test_encoder_decoder_model_generate(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**input_ids_dict)
527

528
529
530
531
    def test_encoder_decoder_model_shared_weights(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.create_and_check_encoder_decoder_shared_weights(**input_ids_dict)

532
    @slow
533
534
    def test_real_model_save_load_from_pretrained(self):
        model_2 = self.get_pretrained_model()
535
536
537
538
539
        model_2.to(torch_device)
        input_ids = ids_tensor([13, 5], model_2.config.encoder.vocab_size)
        decoder_input_ids = ids_tensor([13, 1], model_2.config.encoder.vocab_size)
        attention_mask = ids_tensor([13, 5], vocab_size=2)
        with torch.no_grad():
Lysandre's avatar
Lysandre committed
540
541
542
543
544
            outputs = model_2(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
            )
545
546
547
548
549
550
551
552
553
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmp_dirname:
                model_2.save_pretrained(tmp_dirname)
                model_1 = EncoderDecoderModel.from_pretrained(tmp_dirname)
                model_1.to(torch_device)

                after_outputs = model_1(
Lysandre's avatar
Lysandre committed
554
555
556
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
557
558
559
560
561
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
562
563


Weizhen's avatar
Weizhen committed
564
@require_torch
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
class BertEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "bert-base-cased")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = BertLMHeadModel(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = BertModelTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    def test_relative_position_embeds(self):
        config_and_inputs = self.prepare_config_and_inputs()

        encoder_config = config_and_inputs["config"]
        decoder_config = config_and_inputs["decoder_config"]

        encoder_config.position_embedding_type = "relative_key_query"
        decoder_config.position_embedding_type = "relative_key_query"

        config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder_config, decoder_config)
        model = EncoderDecoderModel(config).eval().to(torch_device)

        logits = model(
            input_ids=config_and_inputs["input_ids"], decoder_input_ids=config_and_inputs["decoder_input_ids"]
        ).logits

        self.assertTrue(logits.shape, (13, 7))

634
635
636
637
638
639
    @slow
    def test_bert2bert_summarization(self):
        model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
        model.to(torch_device)
        tokenizer = BertTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")

640
        ARTICLE_SIGMA = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents."""
641

642
        ARTICLE_AMERICA = """(CNN) -- The 2013 America's Cup will be faster than ever after organizers announced that wingsail catamarans will be the vessels of choice. The race has historically been between yachts with a single hull, however the 34th edition of the contest will be between multi-hull vessels with wings rather than traditional sails. This means the boats will travel faster through the water, with top speeds in excess of 30 knots, almost three times as fast as in the past. The Golden Gate Yacht Club, hosts of the 2013 race and holders of the cup, have also announced a new, shorter race format for the competition. In an attempt to boost interest in one of sailing's showpiece events an annual World Series will also take place, starting in 2011, resulting a world champion team being crowned. In addition, a youth America's Cup will also be introduced, set to begin in 2012. In a statement on the International Sailing Federation (ISAF) website, the CEO of 2010's winning syndicate BMW ORACLE Racing Russell Coutts explained the reasons behind the changes. "We believe this new format and new boat will put the America's Cup back at the pinnacle of our sport," said Coutts. "These changes will give equal opportunity to competitors and long-term economic stability to all teams and all commercial partners. We promised fairness and innovation and this is what we've delivered." The statement also explained how, in addition to generating interest in the contest, the new annual America's Cup World Series will provide increased commercial revenue for the teams and their sponsors. The venue for the 2013 contest is not due to be announced until the end of the year, with San Francisco, Valencia and a location near Rome believed to be under consideration. Vincenzo Onorato, President of the 2013 challengers Mascalzone Latino, supported the changes: "I think that we need to acknowledge that the Defender has kept its word. The America's Cup is going to have fair rules and a truly independent management of the racing."""
643

644
        EXPECTED_SUMMARY_SIGMA = """sae was founded in 1856, five years before the civil war. the fraternity has had to work hard to change recently. the university of oklahoma president says the university's affiliation with the fraternity is permanently done. the sae has had a string of members in recent months."""
645

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        EXPECTED_SUMMARY_AMERICA = """the 2013 america's cup will be faster than ever. the 34th edition of the competition will be held in 2011. the 2013 race will be between multi - hull vessels with wings rather than traditional sails. the new america'' cup will provide increased commercial revenue. the event will also be expanded to a youth america'cup."""

        input_dict = tokenizer(
            [ARTICLE_SIGMA, ARTICLE_AMERICA],
            padding="max_length",
            pad_to_max_length=True,
            max_length=512,
            return_tensors="pt",
        )
        output_ids = model.generate(
            input_dict["input_ids"].to(torch_device), attention_mask=input_dict["attention_mask"].to(torch_device)
        )
        summary = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        self.assertEqual(summary, [EXPECTED_SUMMARY_SIGMA, EXPECTED_SUMMARY_AMERICA])
661

662

Weizhen's avatar
Weizhen committed
663
@require_torch
Patrick von Platen's avatar
Patrick von Platen committed
664
class BertGenerationEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained(
            "google/bert_for_seq_generation_L-24_bbc_encoder", "google/bert_for_seq_generation_L-24_bbc_encoder"
        )

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertGenerationEncoder(config)
        decoder_model = BertGenerationDecoder(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = BertGenerationEncoderTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            input_mask,
            token_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_input_mask,
            decoder_token_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_token_labels": decoder_token_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    @slow
    def test_roberta2roberta_summarization(self):
        model = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_bbc")
        model.to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_bbc")

714
        ARTICLE_PS3 = """The problem is affecting people using the older versions of the PlayStation 3, called the "Fat" model.The problem isn't affecting the newer PS3 Slim systems that have been on sale since September last year.Sony have also said they are aiming to have the problem fixed shortly but is advising some users to avoid using their console for the time being."We hope to resolve this problem within the next 24 hours," a statement reads. "In the meantime, if you have a model other than the new slim PS3, we advise that you do not use your PS3 system, as doing so may result in errors in some functionality, such as recording obtained trophies, and not being able to restore certain data."We believe we have identified that this problem is being caused by a bug in the clock functionality incorporated in the system."The PlayStation Network is used by millions of people around the world.It allows users to play their friends at games like Fifa over the internet and also do things like download software or visit online stores."""
715

716
        ARTICLE_TOSHIBA = """An independent panel appointed by Toshiba found institutional accounting irregularities, the firm said in a statement to investors. Toshiba said it "takes the situation it has caused very seriously" and that it "deeply apologised" to shareholders. The overstatement was roughly triple an initial Toshiba estimate. The probe could lead to a restatement of earnings, a board overhaul and potential action by regulators. "Within Toshiba, there was a corporate culture in which one could not go against the wishes of superiors," the report said. "Therefore, when top management presented 'challenges', division presidents, line managers and employees below them continually carried out inappropriate accounting practices to meet targets in line with the wishes of their superiors." The improper accounting practices stretched back to 2008."""
717

718
719
720
721
722
723
724
725
726
727
728
        EXPECTED_SUMMARY_PS3 = """Sony has said that a bug in its PlayStation 3 console is preventing them from using the machine as a computer."""

        EXPECTED_SUMMARY_TOSHIBA = """Japanese electronics giant Toshiba overstated its annual earnings by more than a third last year, according to a report."""

        input_dict = tokenizer(
            [ARTICLE_PS3, ARTICLE_TOSHIBA], max_length=512, padding="max_length", return_tensors="pt"
        )
        output_ids = model.generate(
            input_dict["input_ids"].to(torch_device), attention_mask=input_dict["attention_mask"].to(torch_device)
        )
        summary = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
729

730
        self.assertEqual(summary, [EXPECTED_SUMMARY_PS3, EXPECTED_SUMMARY_TOSHIBA])
731
732


Weizhen's avatar
Weizhen committed
733
@require_torch
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
class RoBertaEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = RobertaModel(config)
        decoder_model = RobertaForCausalLM(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = RobertaModelTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")
784
785


Weizhen's avatar
Weizhen committed
786
@require_torch
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
class GPT2EncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = GPT2LMHeadModel(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = BertModelTester(self, batch_size=13)
        model_tester_decoder = GPT2ModelTester(self, batch_size=13)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_input_mask,
            decoder_head_mask,
            decoder_token_type_ids,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2")
841
842
843

    def test_encoder_decoder_model_shared_weights(self):
        pass
Weizhen's avatar
Weizhen committed
844

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
    @slow
    def test_bert2gpt2_summarization(self):
        model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")

        model.to(torch_device)
        tokenizer_in = AutoTokenizer.from_pretrained("bert-base-cased")
        tokenizer_out = AutoTokenizer.from_pretrained("gpt2")

        ARTICLE_STUDENTS = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents."""

        EXPECTED_SUMMARY_STUDENTS = """SAS Alpha Epsilon suspended the students, but university president says it's permanent.\nThe fraternity has had to deal with a string of student deaths since 2010.\nSAS has more than 200,000 members, many of whom are students.\nA student died while being forced into excessive alcohol consumption."""

        input_dict = tokenizer_in(ARTICLE_STUDENTS, return_tensors="pt")
        output_ids = model.generate(input_dict["input_ids"].to(torch_device))
        summary = tokenizer_out.batch_decode(output_ids, skip_special_tokens=True)

        self.assertEqual(summary, [EXPECTED_SUMMARY_STUDENTS])

Weizhen's avatar
Weizhen committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

@require_torch
class ProphetNetEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = ProphetNetForCausalLM(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = BertModelTester(self, batch_size=13)
        model_tester_decoder = ProphetNetStandaloneDecoderModelTester(
            self, batch_size=13, hidden_size=32, max_position_embeddings=512
        )
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_attention_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            lm_labels,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": lm_labels,
        }

    def get_pretrained_model(self):
Lysandre Debut's avatar
Lysandre Debut committed
912
913
914
        return EncoderDecoderModel.from_encoder_decoder_pretrained(
            "bert-large-uncased", "microsoft/prophetnet-large-uncased"
        )
Weizhen's avatar
Weizhen committed
915
916
917

    def test_encoder_decoder_model_shared_weights(self):
        pass
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971


@require_torch
class BartEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = BartForCausalLM(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = BertModelTester(self, batch_size=13)
        model_tester_decoder = BartStandaloneDecoderModelTester(
            self, batch_size=13, d_model=32, max_position_embeddings=512
        )
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_attention_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            lm_labels,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": lm_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-large-uncased", "facebook/bart-large")

    def test_encoder_decoder_model_shared_weights(self):
        pass
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006


@require_torch
class EncoderDecoderModelTest(unittest.TestCase):
    def get_from_encoderdecoder_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")

    def get_decoder_config(self):
        config = AutoConfig.from_pretrained("bert-base-uncased")
        config.is_decoder = True
        config.add_cross_attention = True
        return config

    def get_encoderdecoder_model(self):
        return EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")

    def get_encoder_decoder_models(self):
        encoder_model = BertModel.from_pretrained("bert-base-uncased")
        decoder_model = BertLMHeadModel.from_pretrained("bert-base-uncased", config=self.get_decoder_config())
        return {"encoder": encoder_model, "decoder": decoder_model}

    def _check_configuration_tie(self, model):
        assert id(model.decoder.config) == id(model.config.decoder)
        assert id(model.encoder.config) == id(model.config.encoder)

    @slow
    def test_configuration_tie(self):
        model = self.get_from_encoderdecoder_pretrained_model()
        self._check_configuration_tie(model)

        model = EncoderDecoderModel(**self.get_encoder_decoder_models())
        self._check_configuration_tie(model)

        model = self.get_encoderdecoder_model()
        self._check_configuration_tie(model)