test_tokenization_openai.py 4.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import json
18
import os
19
import unittest
20

21
22
23
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.testing_utils import require_tokenizers
from transformers.tokenization_openai import VOCAB_FILES_NAMES
24

25
from .test_tokenization_common import TokenizerTesterMixin
26

27

28
@require_tokenizers
29
class OpenAIGPTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
30

31
    tokenizer_class = OpenAIGPTTokenizer
32
33
    rust_tokenizer_class = OpenAIGPTTokenizerFast
    test_rust_tokenizer = True
34
35

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
36
        super().setUp()
37
38

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "w</w>",
            "r</w>",
            "t</w>",
            "lo",
            "low",
            "er</w>",
            "low</w>",
            "lowest</w>",
            "newer</w>",
            "wider</w>",
            "<unk>",
        ]
62
63
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "l o", "lo w", "e r</w>", ""]
64

65
66
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
67
68
69
70
        with open(self.vocab_file, "w") as fp:
            fp.write(json.dumps(vocab_tokens))
        with open(self.merges_file, "w") as fp:
            fp.write("\n".join(merges))
71

72
    def get_input_output_texts(self, tokenizer):
73
        return "lower newer", "lower newer"
74

75
76
77
78
79
80
81
    def test_full_tokenizer(self):
        tokenizer = OpenAIGPTTokenizer(self.vocab_file, self.merges_file)

        text = "lower"
        bpe_tokens = ["low", "er</w>"]
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)
82

83
84
        input_tokens = tokens + ["<unk>"]
        input_bpe_tokens = [14, 15, 20]
85
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

    def test_padding(self, max_length=15):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Simple input
                s = "This is a simple input"
                s2 = ["This is a simple input 1", "This is a simple input 2"]
                p = ("This is a simple input", "This is a pair")
                p2 = [
                    ("This is a simple input 1", "This is a simple input 2"),
                    ("This is a simple pair 1", "This is a simple pair 2"),
                ]

                # Simple input tests
                self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    s2,
                    max_length=max_length,
                    padding="max_length",
                )

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    p2,
                    max_length=max_length,
                    padding="max_length",
                )