distillation.py 20.6 KB
Newer Older
1
2
3
import argparse
import gc
import os
4
import warnings
5
6
7
8
9
10
11
12
13
from pathlib import Path
from typing import List

import pytorch_lightning as pl
import torch
from torch import nn
from torch.nn import functional as F

from lightning_base import generic_train
14
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5Config, T5ForConditionalGeneration
15
from transformers.modeling_bart import shift_tokens_right
16
17
18


try:
19
    from .finetune import SummarizationModule, TranslationModule
20
21
    from .finetune import main as ft_main
    from .initialization_utils import copy_layers, init_student
22
23
    from .utils import (
        any_requires_grad,
24
        assert_all_frozen,
25
        calculate_bleu,
26
        freeze_params,
27
        label_smoothed_nll_loss,
28
29
        pickle_load,
        use_task_specific_params,
30
    )
31
except ImportError:
32
    from finetune import SummarizationModule, TranslationModule
33
    from finetune import main as ft_main
34
    from initialization_utils import copy_layers, init_student
35
36
    from utils import (
        any_requires_grad,
37
        assert_all_frozen,
38
        calculate_bleu,
39
        freeze_params,
40
        label_smoothed_nll_loss,
41
42
        pickle_load,
        use_task_specific_params,
43
    )
44
45


46
class BartSummarizationDistiller(SummarizationModule):
47
48
    """Supports Bart, Pegasus and other models that inherit from Bart."""

49
50
51
52
    loss_names = ["loss", "ce_loss", "mlm_loss", "enc_mse_loss", "hid_loss_enc", "hid_loss_dec"]

    def __init__(self, hparams):
        assert Path(hparams.data_dir).exists()
53
        student, student_cfg, teacher = self.pre_init(hparams)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

        super().__init__(hparams, model=student, config=student_cfg)
        self.teacher = teacher
        use_task_specific_params(self.teacher, "summarization")
        freeze_params(self.teacher)
        self.sanity_check_gradients()
        self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
        self.temperature = 2.0
        self.alpha_mlm = hparams.alpha_mlm
        self.alpha_ce = hparams.alpha_ce
        self.alpha_hid = hparams.alpha_hid
        # self.alpha_cos = hparams.alpha_cos
        self.alpha_encoder_loss = self.hparams.alpha_encoder_loss
        gc.collect()
        torch.cuda.empty_cache()

    def sanity_check_gradients(self):
        assert_all_frozen(self.teacher)
        assert_all_frozen(self.model.model.decoder.embed_tokens)
        assert_all_frozen(self.model.model.encoder.embed_tokens)
        if self.different_encoder:
            assert any_requires_grad(self.model.model.encoder)
        else:
            freeze_params(self.model.model.encoder)
            del self.teacher.model.encoder

    def pre_init(self, hparams):
81
82
        self.output_dir = Path(hparams.output_dir)
        self.output_dir.mkdir(exist_ok=True)
83
        teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
84
85
86
87
        student_updates = {
            "decoder_layers": hparams.student_decoder_layers,
            "encoder_layers": hparams.student_encoder_layers,
        }
88
89
        if hparams.length_penalty != -1:
            student_updates["length_penalty"] = hparams.length_penalty
90
        d_layers_to_copy: List = get_layers_to_copy(student_updates["decoder_layers"], teacher.config.decoder_layers)
91
92
93
94
95
96
        e_layers_to_copy: List = get_layers_to_copy(student_updates["encoder_layers"], teacher.config.encoder_layers)
        hparams.d_layer_to_copy = d_layers_to_copy
        hparams.e_layer_to_copy = e_layers_to_copy
        kw = teacher.config.to_diff_dict()
        kw.update(student_updates)
        # Copy weights
97
98
        student_cfg = teacher.config_class(**kw)
        student = type(teacher)(student_cfg)
99
        student, _ = init_student(student, teacher)
100
        save_dir = self.output_dir.joinpath("student")
101
        self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
102
103
104
        student.save_pretrained(save_dir)
        hparams.model_name_or_path = str(save_dir)
        return student, student_cfg, teacher
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    def copy_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
        if teacher.config.model_type == "t5":
            return self.copy_t5_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
        self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.encoder_layers
        self.different_decoder = hparams.student_decoder_layers != teacher.config.decoder_layers
        if self.different_decoder:
            copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy)
        if self.different_encoder:
            copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy)

    def copy_t5_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
        self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.num_layers
        self.different_decoder = hparams.student_decoder_layers != teacher.config.num_layers
        if self.different_decoder:
            copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy)
        if self.different_encoder:
            copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy)

    def calc_mse_loss(self, teacher_outputs: torch.Tensor, student_outputs: torch.Tensor, mask) -> torch.FloatTensor:
        if mask is not None:
            # mask has False at padding_idx
            sel_mask = mask[:, :, None].expand_as(student_outputs).bool()
            s_logits_slct = torch.masked_select(student_outputs, sel_mask)
            t_logits_slct = torch.masked_select(teacher_outputs, sel_mask)
        else:
            t_logits_slct = teacher_outputs
            s_logits_slct = student_outputs
        return F.mse_loss(s_logits_slct, t_logits_slct)

    def calc_ce_loss(self, mask, s_logits, t_logits):
        if mask is not None:
            # mask has False at padding_idx
            sel_mask = mask[:, :, None].expand_as(s_logits)
            s_logits_slct = torch.masked_select(
                s_logits, sel_mask
            )  # (bs * seq_length * voc_size) modulo the 1s in mask
            t_logits_slct = torch.masked_select(
                t_logits, sel_mask
            )  # (bs * seq_length * voc_size) modulo the 1s in mask
        else:
            t_logits_slct = t_logits
            s_logits_slct = s_logits  # (bs * seq_length * voc_size) modulo the 1s in mask
        s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1))  # (bs * seq_length, voc_size) modulo the 1s in mask
        assert t_logits_slct.size() == s_logits_slct.size()
        loss_ce = (
            self.ce_loss_fct(
                F.log_softmax(s_logits_slct / self.temperature, dim=-1),
                F.softmax(t_logits_slct / self.temperature, dim=-1),
            )
            * (self.temperature) ** 2
        )
        return loss_ce, s_logits_slct, t_logits_slct

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        SummarizationModule.add_model_specific_args(parser, root_dir)
163
        add_distill_args(parser)
164
165
166
167
168
        return parser

    def _step(self, batch):
        # assert is_frozen(self.teacher)
        pad_token_id = self.tokenizer.pad_token_id
169
170
        input_ids, src_mask, tgt_ids = batch["input_ids"], batch["attention_mask"], batch["labels"]
        decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
171
        # noinspection PyCallingNonCallable
172
        lm_logits, dec_hidden, enc_outputs, enc_hidden_state = self(
173
174
175
176
177
            input_ids,
            attention_mask=src_mask,
            decoder_input_ids=decoder_input_ids,
            output_hidden_states=True,
            output_attentions=False,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            use_cache=False,
        )  # TODO(@sshleifer): return_dict=True cleanup

        # Same cross entropy vs. label smoothing logic as finetune.py
        assert lm_logits.shape[-1] == self.model.config.vocab_size
        if self.hparams.label_smoothing == 0:
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
            loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
            student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
        else:
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
            student_lm_loss, _ = label_smoothed_nll_loss(
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
            )
192
193

        def zero_tensor():
194
            return torch.tensor(0.0).type_as(student_lm_loss)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
        if self.different_encoder:
            with torch.no_grad():
                teacher_enc_outputs, teacher_enc_hid, _ = self.teacher.model.encoder(
                    input_ids, attention_mask=src_mask, output_hidden_states=True
                )
            if self.hparams.alpha_encoder_loss > 0:
                loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, src_mask)

            hid_loss_enc = self.calc_hidden_loss(
                src_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
            )

        teacher_enc_outputs = (enc_outputs,)
        assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)

        with torch.no_grad():
            tloss, tlogits, tdec_hidden, _ = self.teacher(
                input_ids,
                attention_mask=src_mask,
                encoder_outputs=teacher_enc_outputs,
                decoder_input_ids=decoder_input_ids,
218
                lm_labels=tgt_ids,
219
220
221
                output_hidden_states=True,
            )
        dec_mask = decoder_input_ids.ne(pad_token_id)
222
        loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, lm_logits, tlogits)
223
224
225
226
227
        if self.alpha_hid > 0:
            hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_layer_to_copy)

        blended_loss = (
            self.alpha_ce * loss_ce
228
            + self.alpha_mlm * student_lm_loss
229
230
231
            + self.hparams.alpha_encoder_loss * loss_encoder
            + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
        )
232
        return blended_loss, loss_ce, student_lm_loss, loss_encoder, hid_loss_enc, hid_loss_dec
233
234

    def calc_hidden_loss(self, attention_mask, hidden_states, hidden_states_T, matches):
235
236
237
        msg = "expected list or tuple for hidden_states, got tensor of shape: "
        assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}"
        assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}"
238
239
240
241
242
243
244
245
246
247
        mask = attention_mask.to(hidden_states[0])
        valid_count = mask.sum() * hidden_states[0].size(-1)
        hidden_losses = [
            (F.mse_loss(hidden_states[i], hidden_states_T[j], reduction="none") * mask.unsqueeze(-1)).sum()
            / valid_count
            for i, j in enumerate(matches)
        ]
        return sum(hidden_losses)


248
def add_distill_args(parser):
249
    parser.add_argument("--teacher", type=str)
250
251
252
253
254
255
256
257
258
259
260
    parser.add_argument("--alpha_ce", default=0.8, type=float)
    parser.add_argument("--alpha_mlm", default=0.2, type=float)
    parser.add_argument("--alpha_encoder_loss", default=0.0, type=float)
    parser.add_argument("--alpha_hid", default=0.0, type=float, required=False)
    parser.add_argument("--student_decoder_layers", default=12, type=int, required=False)
    parser.add_argument("--student_encoder_layers", default=12, type=int, required=False)
    parser.add_argument("--no_teacher", action="store_true", default=False)
    parser.add_argument("--length_penalty", type=float, default=-1)


class BartTranslationDistiller(BartSummarizationDistiller):
261
262
    """Supports Mbart, Marian, other models that inherit from Bart."""

263
264
    mode = "translation"
    metric_names = ["bleu"]
265
    default_val_metric = "bleu"
266
267
268
269
270
271
272
273
274
275
276

    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        assert hparams.src_lang is not None
        assert hparams.tgt_lang is not None
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]

    def calc_generative_metrics(self, preds, target) -> dict:
277
        return calculate_bleu(preds, target)
278
279
280
281
282
283
284
285

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        TranslationModule.add_model_specific_args(parser, root_dir)
        add_distill_args(parser)
        return parser


286
class T5SummarizationDistiller(BartSummarizationDistiller):
287
    def pre_init(self, hparams):
288
        raise NotImplementedError("T5 Distillation does not work yet")
289
290
        self.output_dir = Path(hparams.output_dir)
        self.output_dir.mkdir(exist_ok=True)
291
292
        teacher = T5ForConditionalGeneration.from_pretrained(hparams.teacher)
        n_layer = hparams.student_decoder_layers
293
        assert n_layer == hparams.student_encoder_layers  # TODO(SS): relax this constraint so that we can do 12-6.
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        d_layers_to_copy = get_layers_to_copy(n_layer, len(teacher.decoder.block))
        e_layers_to_copy: List = get_layers_to_copy(n_layer, len(teacher.encoder.block))
        student_updates = {"num_layers": n_layer}
        hparams.d_layer_to_copy = d_layers_to_copy
        hparams.e_layer_to_copy = e_layers_to_copy
        kw = teacher.config.to_diff_dict()

        kw.update(student_updates)
        # Copy weights
        student_cfg = T5Config(**kw)
        student = T5ForConditionalGeneration(student_cfg)
        student, _ = init_student(student, teacher)
        self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
        Path(hparams.output_dir).mkdir(exist_ok=True)
        task_specific_params = student.config.task_specific_params
        if task_specific_params is not None:
310
311
312
313
314
315
316
            student.config.update(task_specific_params.get("summarization", {}))  # TODO: dont hardcode
        save_dir = self.output_dir.joinpath("student")
        save_dir.mkdir(exist_ok=True)

        student.save_pretrained(save_dir)
        hparams.model_name_or_path = str(save_dir)
        return student, student_cfg, teacher
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    def freeze_embeds(self):
        freeze_params(self.model.shared)
        for d in [self.model.encoder, self.model.decoder]:
            freeze_params(d.embed_tokens)

    def sanity_check_gradients(self):
        """T5"""
        assert_all_frozen(self.teacher)
        assert_all_frozen(self.model.decoder.embed_tokens)
        assert_all_frozen(self.model.encoder.embed_tokens)
        if self.different_encoder:
            assert any_requires_grad(self.model.encoder)
        else:
            freeze_params(self.model.encoder)
            del self.teacher.model.encoder
        if self.different_decoder:
            assert any_requires_grad(self.model.decoder)
        else:
            freeze_params(self.model.decoder)  # TODO(SS): very suspicious

    def _step(self, batch):
        pad_token_id = self.tokenizer.pad_token_id
        source_ids, source_mask, y = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
        decoder_input_ids = y[:, :-1].contiguous()
        labels = y[:, 1:].clone()
        labels[y[:, 1:] == pad_token_id] = -100
        # noinspection PyCallingNonCallable
        dec_mask = decoder_input_ids.ne(pad_token_id)

        sloss, slogits, dec_hidden, enc_outputs, enc_hidden_state = self(
            source_ids,
            attention_mask=source_mask,
            decoder_input_ids=decoder_input_ids,
            labels=labels,
            output_hidden_states=True,
            output_attentions=False,
            use_cache=False,
        )

        def zero_tensor():
            return torch.tensor(0.0).type_as(sloss)

        loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
        if self.different_encoder:
            with torch.no_grad():
                teacher_enc_outputs, teacher_enc_hid = self.teacher.encoder(
Lysandre's avatar
Lysandre committed
364
365
366
367
                    source_ids,
                    attention_mask=source_mask,
                    output_hidden_states=True,
                    use_cache=False,
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
                )
            if self.hparams.alpha_encoder_loss > 0:
                loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, source_mask)

            hid_loss_enc = self.calc_hidden_loss(
                source_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
            )

        teacher_enc_outputs = (enc_outputs,)
        assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)

        with torch.no_grad():
            tloss, tlogits, tdec_hidden, _ = self.teacher(
                source_ids,
                attention_mask=source_mask,
                encoder_outputs=teacher_enc_outputs,
                decoder_input_ids=decoder_input_ids,
385
                labels=labels,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
                output_hidden_states=True,
                use_cache=False,
            )

        loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, slogits, tlogits)
        if self.alpha_hid > 0:
            hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_layer_to_copy)

        blended_loss = (
            self.alpha_ce * loss_ce
            + self.alpha_mlm * sloss
            + self.hparams.alpha_encoder_loss * loss_encoder
            + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
        )
        return blended_loss, loss_ce, sloss, loss_encoder, hid_loss_enc, hid_loss_dec


def create_module(args):
    t5 = "t5" in args.model_name_or_path
    if args.no_teacher:
406
407
408
        module_cls = TranslationModule if "translation" in args.task else SummarizationModule
    elif t5:  # DISTILL T5 WITH TEACHER FOR SUMMARIZATION
        assert "translation" not in args.task, "t5 translation distillation not supported"
409
        module_cls = T5SummarizationDistiller
410
411
    else:  # DISTILL WITH TEACHER
        module_cls = BartTranslationDistiller if "translation" in args.task else BartSummarizationDistiller
412
    args.setup_cls: str = module_cls.__name__
413
    print(f"using module {args.setup_cls}")
414
415
416
417
418
    model = module_cls(args)
    return model


def evaluate_checkpoint(ckpt_path: Path, dest_dir=None):
419
    # TODO(SS): DELETE?
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    exp_dir = ckpt_path.parent
    if dest_dir is None:
        dest_dir = exp_dir
    clash = list(dest_dir.glob("test_generations*"))
    if clash:
        print(f"SKIPPING to avoid overwriting {clash}")
    ckpt = torch.load(ckpt_path, map_location="cpu")
    if "hparams" in ckpt:
        args = argparse.Namespace(**ckpt["hparams"])
    else:
        args = argparse.Namespace(**pickle_load(exp_dir / "hparams.pkl"))
    args.resume_from_checkpoint = str(ckpt_path)
    args.do_train = False
    args.output_dir = str(dest_dir)
    args.n_gpu = 1
    args.eval_batch_size = 16
    Path(args.output_dir).mkdir(exist_ok=True)
    model = create_module(args)
    trainer: pl.Trainer = generic_train(model, args, early_stopping_callback=False)
    trainer.test(model)


442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
LAYERS_TO_COPY = {
    # maps  num layers in student -> which teacher layers to copy.
    # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
    12: {
        1: [0],
        2: [0, 6],
        3: [0, 6, 11],
        4: [0, 4, 8, 11],
        6: [0, 2, 4, 7, 9, 11],
        9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
        12: list(range(12)),
    },
    16: {  # maps  num layers in student -> which teacher layers to copy
        1: [0],
        2: [0, 8],
        3: [0, 8, 15],
        4: [0, 5, 10, 15],
        6: [0, 3, 6, 9, 12, 15],
        8: [0, 2, 4, 6, 8, 10, 12, 15],
        9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
        16: list(range(16)),
    },
    6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}


def get_layers_to_copy(n_student, n_teacher):
    try:
        return LAYERS_TO_COPY[n_teacher][n_student]
    except KeyError:
        warnings.warn(
            f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first {n_student}"
        )
        return list(range(n_student))
476
477
478
479
480
481
482
483
484
485
486
487
488


def distill_main(args):
    Path(args.output_dir).mkdir(exist_ok=True)
    if len(os.listdir(args.output_dir)) > 3 and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    model = create_module(args)
    return ft_main(args, model=model)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
489
    parser = pl.Trainer.add_argparse_args(parser)
490
    parser = BartSummarizationDistiller.add_model_specific_args(parser, os.getcwd())
491
492
493
    args = parser.parse_args()

    distill_main(args)