modeling_tf_gpt2.py 32.4 KB
Newer Older
thomwolf's avatar
WIP  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 OpenAI GPT-2 model. """


import logging

import numpy as np
import tensorflow as tf

Aymeric Augustin's avatar
Aymeric Augustin committed
24
from .configuration_gpt2 import GPT2Config
Lysandre's avatar
TF GPT2  
Lysandre committed
25
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
26
27
from .modeling_tf_utils import (
    TFConv1D,
28
    TFMainLayer,
Aymeric Augustin's avatar
Aymeric Augustin committed
29
    TFPreTrainedModel,
30
    TFSequenceSummary,
Aymeric Augustin's avatar
Aymeric Augustin committed
31
    TFSharedEmbeddings,
32
    get_initializer,
Aymeric Augustin's avatar
Aymeric Augustin committed
33
    shape_list,
34
)
Aymeric Augustin's avatar
Aymeric Augustin committed
35

thomwolf's avatar
WIP  
thomwolf committed
36
37
38

logger = logging.getLogger(__name__)

39
40
41
42
43
44
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {
    "gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-tf_model.h5",
    "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-tf_model.h5",
    "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-tf_model.h5",
    "distilgpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-tf_model.h5",
}
thomwolf's avatar
WIP  
thomwolf committed
45
46
47
48
49
50
51
52
53
54
55


def gelu(x):
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
56
    cdf = 0.5 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
thomwolf's avatar
WIP  
thomwolf committed
57
58
59
60
    return x * cdf


class TFAttention(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
61
    def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
62
        super().__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
63
64
65
66
67
        self.output_attentions = config.output_attentions

        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
68
        self.n_ctx = n_ctx
thomwolf's avatar
WIP  
thomwolf committed
69
70
71
72
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale

73
74
        self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn")
        self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj")
thomwolf's avatar
thomwolf committed
75
76
        self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop)
        self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
77
78
79
        self.pruned_heads = set()

    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
80
81
82
        pass

    @staticmethod
thomwolf's avatar
thomwolf committed
83
    def causal_attention_mask(nd, ns, dtype):
thomwolf's avatar
thomwolf committed
84
85
86
        """1's in the lower triangle, counting from the lower right corner.
        Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
        """
87
        i = tf.range(nd)[:, None]
thomwolf's avatar
thomwolf committed
88
89
90
91
92
        j = tf.range(ns)
        m = i >= j - ns + nd
        return tf.cast(m, dtype)

    def _attn(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
93
        q, k, v, attention_mask, head_mask = inputs
thomwolf's avatar
thomwolf committed
94
95
        # q, k, v have shape [batch, heads, sequence, features]
        w = tf.matmul(q, k, transpose_b=True)
thomwolf's avatar
WIP  
thomwolf committed
96
        if self.scale:
97
            dk = tf.cast(shape_list(k)[-1], tf.float32)  # scale attention_scores
thomwolf's avatar
thomwolf committed
98
            w = w / tf.math.sqrt(dk)
thomwolf's avatar
thomwolf committed
99
100
101

        # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
        _, _, nd, ns = shape_list(w)
thomwolf's avatar
thomwolf committed
102
        b = self.causal_attention_mask(nd, ns, dtype=w.dtype)
thomwolf's avatar
thomwolf committed
103
        b = tf.reshape(b, [1, 1, nd, ns])
thomwolf's avatar
WIP  
thomwolf committed
104
105
        w = w * b - 1e4 * (1 - b)

thomwolf's avatar
thomwolf committed
106
107
108
109
110
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

        w = tf.nn.softmax(w, axis=-1)
thomwolf's avatar
thomwolf committed
111
        w = self.attn_dropout(w, training=training)
thomwolf's avatar
WIP  
thomwolf committed
112
113
114
115
116

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
117
        outputs = [tf.matmul(w, v)]
thomwolf's avatar
WIP  
thomwolf committed
118
119
120
121
122
        if self.output_attentions:
            outputs.append(w)
        return outputs

    def merge_heads(self, x):
thomwolf's avatar
thomwolf committed
123
        x = tf.transpose(x, [0, 2, 1, 3])
thomwolf's avatar
thomwolf committed
124
125
        x_shape = shape_list(x)
        new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
thomwolf's avatar
thomwolf committed
126
127
128
        return tf.reshape(x, new_x_shape)

    def split_heads(self, x):
thomwolf's avatar
thomwolf committed
129
130
        x_shape = shape_list(x)
        new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
thomwolf's avatar
thomwolf committed
131
132
133
134
        x = tf.reshape(x, new_x_shape)
        return tf.transpose(x, (0, 2, 1, 3))  # (batch, head, seq_length, head_features)

    def call(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
135
        x, layer_past, attention_mask, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
136
137

        x = self.c_attn(x)
thomwolf's avatar
thomwolf committed
138
        query, key, value = tf.split(x, 3, axis=2)
thomwolf's avatar
WIP  
thomwolf committed
139
        query = self.split_heads(query)
thomwolf's avatar
thomwolf committed
140
        key = self.split_heads(key)
thomwolf's avatar
WIP  
thomwolf committed
141
142
        value = self.split_heads(value)
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
143
144
145
146
            past_key, past_value = tf.unstack(layer_past, axis=1)
            key = tf.concat([past_key, key], axis=-2)
            value = tf.concat([past_value, value], axis=-2)
        present = tf.stack([key, value], axis=1)
thomwolf's avatar
WIP  
thomwolf committed
147

thomwolf's avatar
thomwolf committed
148
        attn_outputs = self._attn([query, key, value, attention_mask, head_mask], training=training)
thomwolf's avatar
WIP  
thomwolf committed
149
150
151
152
        a = attn_outputs[0]

        a = self.merge_heads(a)
        a = self.c_proj(a)
thomwolf's avatar
thomwolf committed
153
        a = self.resid_dropout(a, training=training)
thomwolf's avatar
WIP  
thomwolf committed
154
155
156
157
158

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)


thomwolf's avatar
thomwolf committed
159
class TFMLP(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
160
    def __init__(self, n_state, config, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
161
        super().__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
162
        nx = config.n_embd
163
164
        self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc")
        self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj")
thomwolf's avatar
WIP  
thomwolf committed
165
        self.act = gelu
thomwolf's avatar
thomwolf committed
166
        self.dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
167

thomwolf's avatar
thomwolf committed
168
    def call(self, x, training=False):
thomwolf's avatar
WIP  
thomwolf committed
169
170
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
thomwolf's avatar
thomwolf committed
171
        h2 = self.dropout(h2, training=training)
thomwolf's avatar
thomwolf committed
172
        return h2
thomwolf's avatar
WIP  
thomwolf committed
173
174


thomwolf's avatar
thomwolf committed
175
176
class TFBlock(tf.keras.layers.Layer):
    def __init__(self, n_ctx, config, scale=False, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
177
        super().__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
178
        nx = config.n_embd
179
180
181
182
        self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
        self.attn = TFAttention(nx, n_ctx, config, scale, name="attn")
        self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2")
        self.mlp = TFMLP(4 * nx, config, name="mlp")
thomwolf's avatar
WIP  
thomwolf committed
183

thomwolf's avatar
thomwolf committed
184
185
    def call(self, inputs, training=False):
        x, layer_past, attention_mask, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
186

thomwolf's avatar
thomwolf committed
187
188
189
        a = self.ln_1(x)
        output_attn = self.attn([a, layer_past, attention_mask, head_mask], training=training)
        a = output_attn[0]  # output_attn: a, present, (attentions)
thomwolf's avatar
WIP  
thomwolf committed
190
        x = x + a
thomwolf's avatar
thomwolf committed
191
192
193

        m = self.ln_2(x)
        m = self.mlp(m, training=training)
thomwolf's avatar
WIP  
thomwolf committed
194
195
196
197
198
        x = x + m

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)

thomwolf's avatar
thomwolf committed
199

200
class TFGPT2MainLayer(TFMainLayer):
thomwolf's avatar
thomwolf committed
201
    def __init__(self, config, *inputs, **kwargs):
202
        super().__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
203
204
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
thomwolf's avatar
thomwolf committed
205
        self.num_hidden_layers = config.n_layer
thomwolf's avatar
thomwolf committed
206
207
208
        self.vocab_size = config.vocab_size
        self.n_embd = config.n_embd

209
210
211
212
213
214
215
216
217
        self.wte = TFSharedEmbeddings(
            config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte"
        )
        self.wpe = tf.keras.layers.Embedding(
            config.n_positions,
            config.n_embd,
            embeddings_initializer=get_initializer(config.initializer_range),
            name="wpe",
        )
thomwolf's avatar
thomwolf committed
218
        self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
219
220
        self.h = [TFBlock(config.n_ctx, config, scale=True, name="h_._{}".format(i)) for i in range(config.n_layer)]
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
thomwolf's avatar
thomwolf committed
221

222
223
224
    def get_input_embeddings(self):
        return self.wte

thomwolf's avatar
thomwolf committed
225
226
227
228
229
230
231
232
233
    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        raise NotImplementedError

234
235
236
237
238
239
240
241
242
243
244
    def call(
        self,
        inputs,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        training=False,
    ):
thomwolf's avatar
thomwolf committed
245
        if isinstance(inputs, (tuple, list)):
thomwolf's avatar
thomwolf committed
246
            input_ids = inputs[0]
thomwolf's avatar
thomwolf committed
247
248
249
250
251
            past = inputs[1] if len(inputs) > 1 else past
            attention_mask = inputs[2] if len(inputs) > 2 else attention_mask
            token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids
            position_ids = inputs[4] if len(inputs) > 4 else position_ids
            head_mask = inputs[5] if len(inputs) > 5 else head_mask
252
253
            inputs_embeds = inputs[6] if len(inputs) > 6 else inputs_embeds
            assert len(inputs) <= 7, "Too many inputs."
thomwolf's avatar
thomwolf committed
254
        elif isinstance(inputs, dict):
255
256
257
258
259
260
261
            input_ids = inputs.get("input_ids")
            past = inputs.get("past", past)
            attention_mask = inputs.get("attention_mask", attention_mask)
            token_type_ids = inputs.get("token_type_ids", token_type_ids)
            position_ids = inputs.get("position_ids", position_ids)
            head_mask = inputs.get("head_mask", head_mask)
            inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
262
            assert len(inputs) <= 7, "Too many inputs."
thomwolf's avatar
thomwolf committed
263
264
        else:
            input_ids = inputs
thomwolf's avatar
thomwolf committed
265

266
267
268
269
270
271
272
273
274
275
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = shape_list(input_ids)
            input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
        elif inputs_embeds is not None:
            input_shape = shape_list(inputs_embeds)[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

thomwolf's avatar
thomwolf committed
276
277
278
279
        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
thomwolf's avatar
thomwolf committed
280
            past_length = shape_list(past[0][0])[-2]
thomwolf's avatar
thomwolf committed
281
        if position_ids is None:
282
            position_ids = tf.range(past_length, input_shape[-1] + past_length, dtype=tf.int32)[tf.newaxis, :]
thomwolf's avatar
thomwolf committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

        if attention_mask is not None:
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.

            attention_mask = tf.cast(attention_mask, tf.float32)
            attention_mask = (1.0 - attention_mask) * -10000.0
        else:
            attention_mask = None
thomwolf's avatar
thomwolf committed
302
303
304
305

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
306
307
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
308
        if head_mask is not None:
thomwolf's avatar
thomwolf committed
309
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
310
        else:
thomwolf's avatar
thomwolf committed
311
312
            head_mask = [None] * self.num_hidden_layers
            # head_mask = tf.constant([0] * self.num_hidden_layers)
thomwolf's avatar
thomwolf committed
313

thomwolf's avatar
thomwolf committed
314
        position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
thomwolf's avatar
thomwolf committed
315

316
        if inputs_embeds is None:
317
            inputs_embeds = self.wte(input_ids, mode="embedding")
thomwolf's avatar
thomwolf committed
318
319
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
thomwolf's avatar
thomwolf committed
320
            token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
321
            token_type_embeds = self.wte(token_type_ids, mode="embedding")
thomwolf's avatar
thomwolf committed
322
323
324
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
325
        hidden_states = self.drop(hidden_states, training=training)
thomwolf's avatar
thomwolf committed
326

thomwolf's avatar
thomwolf committed
327
        output_shape = input_shape + [shape_list(hidden_states)[-1]]
thomwolf's avatar
thomwolf committed
328
329
330
331
332
333

        presents = ()
        all_attentions = []
        all_hidden_states = ()
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
334
335
336
                all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)

            outputs = block([hidden_states, layer_past, attention_mask, head_mask[i]], training=training)
thomwolf's avatar
thomwolf committed
337
338
339

            hidden_states, present = outputs[:2]
            presents = presents + (present,)
thomwolf's avatar
WIP  
thomwolf committed
340

thomwolf's avatar
thomwolf committed
341
342
343
344
345
            if self.output_attentions:
                all_attentions.append(outputs[2])

        hidden_states = self.ln_f(hidden_states)

thomwolf's avatar
thomwolf committed
346
        hidden_states = tf.reshape(hidden_states, output_shape)
thomwolf's avatar
thomwolf committed
347
348
349
350
351
352
353
354
355
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states, presents)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            # let the number of heads free (-1) so we can extract attention even after head pruning
thomwolf's avatar
thomwolf committed
356
357
            attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
            all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
thomwolf's avatar
thomwolf committed
358
359
360
            outputs = outputs + (all_attentions,)
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)

thomwolf's avatar
thomwolf committed
361

thomwolf's avatar
thomwolf committed
362
class TFGPT2PreTrainedModel(TFPreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
363
    """ An abstract class to handle weights initialization and
364
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
WIP  
thomwolf committed
365
    """
366

thomwolf's avatar
WIP  
thomwolf committed
367
    config_class = GPT2Config
thomwolf's avatar
thomwolf committed
368
    pretrained_model_archive_map = TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
WIP  
thomwolf committed
369
370
371
    base_model_prefix = "transformer"


Lysandre's avatar
Lysandre committed
372
GPT2_START_DOCSTRING = r"""
thomwolf's avatar
WIP  
thomwolf committed
373

Lysandre's avatar
TF GPT2  
Lysandre committed
374
    .. note::
thomwolf's avatar
thomwolf committed
375
376
377
378
379
        TF 2.0 models accepts two formats as inputs:

            - having all inputs as keyword arguments (like PyTorch models), or
            - having all inputs as a list, tuple or dict in the first positional arguments.

Lysandre's avatar
Lysandre committed
380
        This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having
Lysandre's avatar
TF GPT2  
Lysandre committed
381
        all the tensors in the first argument of the model call function: :obj:`model(inputs)`.
thomwolf's avatar
thomwolf committed
382

Lysandre's avatar
Lysandre committed
383
        If you choose this second option, there are three possibilities you can use to gather all the input Tensors
Lysandre's avatar
TF GPT2  
Lysandre committed
384
        in the first positional argument :
thomwolf's avatar
thomwolf committed
385

Lysandre's avatar
TF GPT2  
Lysandre committed
386
        - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)`
thomwolf's avatar
thomwolf committed
387
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
Lysandre's avatar
TF GPT2  
Lysandre committed
388
389
390
          :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associated to the input names given in the docstring:
          :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
thomwolf's avatar
WIP  
thomwolf committed
391
392

    Parameters:
393
        config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
thomwolf's avatar
WIP  
thomwolf committed
394
            Initializing with a config file does not load the weights associated with the model, only the configuration.
395
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
WIP  
thomwolf committed
396
397
"""

Lysandre's avatar
Lysandre committed
398
GPT2_INPUTS_DOCSTRING = r"""
Lysandre's avatar
TF GPT2  
Lysandre committed
399
400
    Args:
        input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Lysandre's avatar
Lysandre committed
401
402
            Indices of input sequence tokens in the vocabulary.

Lysandre's avatar
TF GPT2  
Lysandre committed
403
            Indices can be obtained using :class:`transformers.GPT2Tokenizer`.
404
            See :func:`transformers.PreTrainedTokenizer.encode` and
Lysandre's avatar
TF GPT2  
Lysandre committed
405
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.
Lysandre's avatar
Lysandre committed
406

Lysandre's avatar
TF GPT2  
Lysandre committed
407
408
409
410
411
412
            `What are input IDs? <../glossary.html#input-ids>`__
        past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`):
            Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
413
414
415
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
Lysandre's avatar
Lysandre committed
416

Lysandre's avatar
TF GPT2  
Lysandre committed
417
            `What are attention masks? <../glossary.html#attention-mask>`__
Lysandre's avatar
Lysandre committed
418
        token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Lysandre's avatar
TF GPT2  
Lysandre committed
419
420
421
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
Lysandre's avatar
Lysandre committed
422

Lysandre's avatar
TF GPT2  
Lysandre committed
423
424
            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
425
426
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
Lysandre's avatar
Lysandre committed
427

Lysandre's avatar
TF GPT2  
Lysandre committed
428
429
            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
WIP  
thomwolf committed
430
431
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
Lysandre's avatar
TF GPT2  
Lysandre committed
432
433
434
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        input_embeds (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
435
436
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
Lysandre's avatar
Lysandre committed
437
438
439
        training (:obj:`boolean`, `optional`, defaults to :obj:`False`):
            Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them
            (if set to :obj:`False`) for evaluation.
thomwolf's avatar
WIP  
thomwolf committed
440
441
"""

442
443
444
445
446

@add_start_docstrings(
    "The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
    GPT2_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
447
class TFGPT2Model(TFGPT2PreTrainedModel):
Lysandre's avatar
TF GPT2  
Lysandre committed
448
449
450
451
452
453
454
455
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFGPT2MainLayer(config, name="transformer")

    @add_start_docstrings_to_callable(GPT2_INPUTS_DOCSTRING)
    def call(self, inputs, **kwargs):
        r"""
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
456
        :obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.GPT2Config`) and inputs:
Lysandre's avatar
TF GPT2  
Lysandre committed
457
        last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
thomwolf's avatar
WIP  
thomwolf committed
458
            Sequence of hidden-states at the last layer of the model.
Lysandre's avatar
TF GPT2  
Lysandre committed
459
460
461
462
463
464
465
466
        past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(tf.Tensor)` `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

thomwolf's avatar
WIP  
thomwolf committed
467
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
Lysandre's avatar
TF GPT2  
Lysandre committed
468
469
470
471
472
473
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
thomwolf's avatar
WIP  
thomwolf committed
474
475
476

    Examples::

thomwolf's avatar
thomwolf committed
477
        import tensorflow as tf
478
        from transformers import GPT2Tokenizer, TFGPT2Model
thomwolf's avatar
thomwolf committed
479

thomwolf's avatar
WIP  
thomwolf committed
480
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
481
        model = TFGPT2Model.from_pretrained('gpt2')
482
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]  # Batch size 1
thomwolf's avatar
WIP  
thomwolf committed
483
484
485
486
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
thomwolf's avatar
thomwolf committed
487
        outputs = self.transformer(inputs, **kwargs)
thomwolf's avatar
thomwolf committed
488
        return outputs
thomwolf's avatar
WIP  
thomwolf committed
489
490


491
492
@add_start_docstrings(
    """The GPT2 Model transformer with a language modeling head on top
Lysandre's avatar
TF GPT2  
Lysandre committed
493
    (linear layer with weights tied to the input embeddings). """,
494
495
    GPT2_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
496
class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
Lysandre's avatar
TF GPT2  
Lysandre committed
497
498
499
500
501
502
503
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFGPT2MainLayer(config, name="transformer")

    def get_output_embeddings(self):
        return self.transformer.wte

504
505
506
507
508
509
510
    def prepare_inputs_for_generation(self, inputs, past, **kwargs):
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            inputs = tf.expand_dims(inputs[:, -1], -1)

        return {"inputs": inputs, "past": past}

Lysandre's avatar
TF GPT2  
Lysandre committed
511
512
513
514
    @add_start_docstrings_to_callable(GPT2_INPUTS_DOCSTRING)
    def call(self, inputs, **kwargs):
        r"""
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
515
        :obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.GPT2Config`) and inputs:
Lysandre's avatar
TF GPT2  
Lysandre committed
516
        prediction_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
thomwolf's avatar
WIP  
thomwolf committed
517
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
Lysandre's avatar
TF GPT2  
Lysandre committed
518
519
520
521
522
523
524
525
        past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

thomwolf's avatar
WIP  
thomwolf committed
526
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
Lysandre's avatar
TF GPT2  
Lysandre committed
527
528
529
530
531
532
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
thomwolf's avatar
WIP  
thomwolf committed
533
534
535

    Examples::

thomwolf's avatar
thomwolf committed
536
        import tensorflow as tf
537
        from transformers import GPT2Tokenizer, TFGPT2LMHeadModel
thomwolf's avatar
WIP  
thomwolf committed
538
539

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
540
        model = TFGPT2LMHeadModel.from_pretrained('gpt2')
thomwolf's avatar
WIP  
thomwolf committed
541

542
        input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]  # Batch size 1
thomwolf's avatar
thomwolf committed
543
        outputs = model(input_ids)
thomwolf's avatar
thomwolf committed
544
        logits = outputs[0]
thomwolf's avatar
WIP  
thomwolf committed
545

Lysandre's avatar
TF GPT2  
Lysandre committed
546
        """
thomwolf's avatar
thomwolf committed
547
        transformer_outputs = self.transformer(inputs, **kwargs)
thomwolf's avatar
WIP  
thomwolf committed
548
549
        hidden_states = transformer_outputs[0]

thomwolf's avatar
thomwolf committed
550
        lm_logits = self.transformer.wte(hidden_states, mode="linear")
thomwolf's avatar
WIP  
thomwolf committed
551
552
553

        outputs = (lm_logits,) + transformer_outputs[1:]

thomwolf's avatar
thomwolf committed
554
        return outputs  # lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
WIP  
thomwolf committed
555
556


557
558
@add_start_docstrings(
    """The GPT2 Model transformer with a language modeling and a multiple-choice classification
Lysandre's avatar
TF GPT2  
Lysandre committed
559
560
561
    head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
    The language modeling head has its weights tied to the input embeddings,
    the classification head takes as input the input of a specified classification token index in the input sequence).
562
563
564
""",
    GPT2_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
565
class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
Lysandre's avatar
TF GPT2  
Lysandre committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        config.num_labels = 1
        self.transformer = TFGPT2MainLayer(config, name="transformer")
        self.multiple_choice_head = TFSequenceSummary(
            config, initializer_range=config.initializer_range, name="multiple_choice_head"
        )

    def get_output_embeddings(self):
        return self.transformer.wte

    @add_start_docstrings_to_callable(GPT2_INPUTS_DOCSTRING)
    def call(
        self,
        inputs,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        mc_token_ids=None,
        training=False,
    ):
        r"""
        mc_token_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input)
thomwolf's avatar
WIP  
thomwolf committed
592
593
594
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.

Lysandre's avatar
TF GPT2  
Lysandre committed
595
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
596
        :obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:class:`~transformers.GPT2Config`) and inputs:
Lysandre's avatar
TF GPT2  
Lysandre committed
597
        lm_prediction_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`):
thomwolf's avatar
WIP  
thomwolf committed
598
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
Lysandre's avatar
TF GPT2  
Lysandre committed
599
600
601
602
603
604
605
606
607
608
        mc_prediction_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices)`):
            Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
        past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

thomwolf's avatar
WIP  
thomwolf committed
609
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
Lysandre's avatar
TF GPT2  
Lysandre committed
610
611
612
613
614
615
616
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

thomwolf's avatar
WIP  
thomwolf committed
617
618
619

    Examples::

Lysandre's avatar
Lysandre committed
620
        # For example purposes. Not runnable.
thomwolf's avatar
thomwolf committed
621
        import tensorflow as tf
622
        from transformers import GPT2Tokenizer, TFGPT2DoubleHeadsModel
thomwolf's avatar
thomwolf committed
623

thomwolf's avatar
WIP  
thomwolf committed
624
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
625
        model = TFGPT2DoubleHeadsModel.from_pretrained('gpt2')
626

thomwolf's avatar
WIP  
thomwolf committed
627
        # Add a [CLS] to the vocabulary (we should train it also!)
thomwolf's avatar
thomwolf committed
628
629
        # This option is currently not implemented in TF 2.0
        raise NotImplementedError
thomwolf's avatar
WIP  
thomwolf committed
630
631
632
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
633

thomwolf's avatar
WIP  
thomwolf committed
634
635
636
637
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

thomwolf's avatar
thomwolf committed
638
639
        input_ids = tf.constant(encoded_choices)[None, :]  # Batch size: 1, number of choices: 2
        mc_token_ids = tf.constant([cls_token_location])  # Batch size: 1
thomwolf's avatar
WIP  
thomwolf committed
640
641
642
643

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]

Lysandre's avatar
TF GPT2  
Lysandre committed
644
        """
thomwolf's avatar
thomwolf committed
645
        if isinstance(inputs, (tuple, list)):
thomwolf's avatar
thomwolf committed
646
            input_ids = inputs[0]
thomwolf's avatar
thomwolf committed
647
648
649
650
651
            past = inputs[1] if len(inputs) > 1 else past
            attention_mask = inputs[2] if len(inputs) > 2 else attention_mask
            token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids
            position_ids = inputs[4] if len(inputs) > 4 else position_ids
            head_mask = inputs[5] if len(inputs) > 5 else head_mask
652
653
654
            inputs_embeds = inputs[6] if len(inputs) > 6 else inputs_embeds
            mc_token_ids = inputs[7] if len(inputs) > 7 else mc_token_ids
            assert len(inputs) <= 8, "Too many inputs."
thomwolf's avatar
thomwolf committed
655
        elif isinstance(inputs, dict):
656
657
658
659
660
661
662
663
            input_ids = inputs.get("input_ids")
            past = inputs.get("past", past)
            attention_mask = inputs.get("attention_mask", attention_mask)
            token_type_ids = inputs.get("token_type_ids", token_type_ids)
            position_ids = inputs.get("position_ids", position_ids)
            head_mask = inputs.get("head_mask", head_mask)
            inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
            mc_token_ids = inputs.get("mc_token_ids", mc_token_ids)
664
            assert len(inputs) <= 8, "Too many inputs."
thomwolf's avatar
thomwolf committed
665
666
        else:
            input_ids = inputs
thomwolf's avatar
thomwolf committed
667

668
669
670
671
        if input_ids is not None:
            input_shapes = shape_list(input_ids)
        else:
            input_shapes = shape_list(inputs_embeds)[:-1]
672
673

        seq_length = input_shapes[-1]
thomwolf's avatar
thomwolf committed
674

675
        flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
thomwolf's avatar
thomwolf committed
676
677
678
679
        flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
        flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
        flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None

680
681
682
683
684
685
686
687
688
        flat_inputs = [
            flat_input_ids,
            past,
            flat_attention_mask,
            flat_token_type_ids,
            flat_position_ids,
            head_mask,
            inputs_embeds,
        ]
thomwolf's avatar
thomwolf committed
689

690
        transformer_outputs = self.transformer(flat_inputs, training=training)
thomwolf's avatar
WIP  
thomwolf committed
691
692
        hidden_states = transformer_outputs[0]

693
694
        hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])

thomwolf's avatar
thomwolf committed
695
696
        lm_logits = self.transformer.wte(hidden_states, mode="linear")
        mc_logits = self.multiple_choice_head([hidden_states, mc_token_ids], training=training)
thomwolf's avatar
WIP  
thomwolf committed
697

698
699
        mc_logits = tf.squeeze(mc_logits, axis=-1)

thomwolf's avatar
WIP  
thomwolf committed
700
701
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]

thomwolf's avatar
thomwolf committed
702
        return outputs  # lm logits, mc logits, presents, (all hidden_states), (attentions)